hinge loss(损失函数)详解

hinge loss:支持向量机损失函数
1.对于训练集中的第 i i i张图片数据 x i x_i xi,在 W W W下会有一个得分结果向量 f ( x i , W ) f(x_i,W) f(xi,W);
2.第 j j j类的得分我们记作 f ( x i , W ) j f(x_i,W)_j f(xi,W)j;
3.则在该样本上的损失,我们由下列的公式可以计算得到 (1) L i = ∑ j ≠ y i m a x ( 0 , f ( x i , W ) j − f ( x i , W ) y i + △ ) L_i=\sum_{ {j}{\ne} y_i} max(0,f(x_i,W)_j-f(x_i,W)_{y_i}+\bigtriangleup) \tag 1 Li=j̸=yimax(0,f(xi,W)jf(xi,W)yi+)(1)
建设我们现在有三个类别,而得分函数计算某张图片的得分为 f ( x i , W ) = [ 13 , − 7 , 11 ] f(x_i,W)=[13,-7,11] f(xi,W)=[13,7,11],而实际的结果是第一类( y i = 0 y_i=0 yi=0)。假设 △ = 10 \bigtriangleup=10 =10,上面的公式把错误类别( j j j不等于 y i y_i yi)都遍历类一遍。求值加和: (2) L i = m a x ( 0 , − 7 − 13 + 10 ) + m a x ( 0 , 11 − 13 + 10 ) L_i=max(0,-7-13+10)+max(0,11-13+10) \tag 2 Li=max(0,713+10)+max(0,1113+10)(2)
其中, △ \bigtriangleup 相当于SVM中的分离“道”的宽度。

因为是线性模型,因此可以简化成:
(3) L i = ∑ j ≠ y i m a x ( 0 , w j T x i − w y i T x i + △ ) L_i=\sum_{j\ne y_i}max(0,w_{j}^{T}x_i-w_{y_i}^{T}x_i+\bigtriangleup) \tag 3 Li=j̸=yimax(0,wjTxiwyiTxi+)(3)
加正则化项 (4) L = 1 N ∑ i L i + λ R ( W ) L=\frac{1}{N}\sum_i L_i+\lambda R(W) \tag 4 L=N1iLi+λR(W)(4)其中 1 N ∑ i L i \frac{1}{N}\sum_i L_i N1iLi为data loss, λ R ( W ) \lambda R(W) λR(W)为正则化损失。

将(4)式展开得: L = 1 N ∑ i ∑ j ≠ y i [ m a x ( 0 , f ( x i ; W ) j − f ( x i ; W ) y i + △ ) ] + λ ∑ k ∑ l L=\frac{1}{N}\sum_i \sum_{j\ne y_i}[max(0,f(xi;W)_j-f(x_i;W)_{y_i}+\bigtriangleup)]+\lambda\sum_{k}\sum_{l} L=N1ij̸=yi[max(0,f(xi;W)jf(xi;W)yi+)]+λkl

正确分类的分值越大越好,错误分类的分值越小越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值