声明:
- 参考自维基百科
- 后面可能会更新
Hinge Loss
在机器学习中,hinge loss作为一个损失函数(loss function),通常被用于最大间隔算法(maximum-margin),而最大间隔算法又是SVM(支持向量机support vector machines)用到的重要算法(注意:SVM的学习算法有两种解释:1. 间隔最大化与拉格朗日对偶;2. Hinge Loss)。
Hinge loss专用于二分类问题,标签值
y=±1
y
=
±
1
,预测值
ŷ ∈R
y
^
∈
R
。该二分类问题的目标函数的要求如下:
当
ŷ
y
^
大于等于+1或者小于等于-1时,都是分类器确定的分类结果,此时的损失函数loss为0;而当预测值
ŷ ∈(−1,1)
y
^
∈
(
−
1
,
1
)
时,分类器对分类结果不确定,loss不为0。显然,当
ŷ =0
y
^
=
0
时,loss达到最大值。
如果你想到了一个可以定义这种loss的函数,那说明有成为数学家的潜质。想不到的话就乖乖的往下看:hinge loss出场。
对于输出
y=±1
y
=
±
1
,当前
ŷ
y
^
的损失为:
上式是Hinge loss在二分类问题的的变体,可以看做双向Hinge loss。难以理解的话,可以先看单方向的hinge loss。以y=+1,为例。当 y⩾1 y ⩾ 1 时,loss为0,否则loss线性增大。函数图像如下所示:
图片来源: 机器学习基础(四十二)—— 常用损失函数的设计(multiclass SVM loss & hinge loss)
Hinge loss在SVM中的应用
SVM在简单情况下(线性可分情况下)使用的就是一个最大间隔算法。几何意义如下图所示(实心的数据点就是该类别的支持向量),最大化分离超平面到两个类别的支持向量之间的距离 。
图片来源: 知乎-支持向量机(SVM)是什么意思?
线性可分SVM的预测值 ŷ =w⋅x+b y ^ = w ⋅ x + b ,其中 w w 和都是分类器通过样本学习到的参数。正如前面所说, ŷ ∈R y ^ ∈ R 。如果分离超平面在如上图所示的位置(这是最大分割情况)并且支持向量与分割平面之间的距离=1,每个 y=1 y = 1 的样本其 ŷ ⩾1 y ^ ⩾ 1 ,每个 y=−1 y = − 1 的样本其 ŷ ⩽−1 y ^ ⩽ − 1 ,每个点的Hinge loss为0,整体loss作为平均值,也等于0。 如果分割超平面误分类,则Hinge loss大于0。Hinge loss驱动分割超平面作出调整。 如果分割超平面距离支持向量的距离小于1,则Hinge loss大于0,且就算分离超平面满足最大间隔,Hinge loss仍大于0
拓展
再强调一下,使用Hinge loss的分类器的 ŷ ∈R y ^ ∈ R 。 |ŷ | | y ^ | 越大,说明样本点离分割超平面越远,即该样本点很容易被分类。但是,我们在选择合适的损失函数进行优化时,没必要关注那些离超平面很远的样本。为此,我们可以通过对距分离超平面的距离选择一个阈值,来过滤这些离超平面很远的样本。这就是Hinge loss的精髓, ℓ(y)=max(0,1−y⋅ŷ ) ℓ ( y ) = max ( 0 , 1 − y ⋅ y ^ ) ,式中的1就是我们选择的阈值,这个可以作为一个超参数。通过一个max(0, )函数,忽略 ŷ y ^ 值过高的情况。
SVM
这个思想可以拓展到SVM的多分类问题。SVM的多分类有两种损失函数:
其中,
maxŷ ≠y(wŷ x+b)
max
y
^
≠
y
(
w
y
^
x
+
b
)
表示对于某一标签值
y
y
,分类器错误预测的最大值,表示正确的分类器预测值,
1
1
表示分类阈值。注意:即使是分类器,也是先产生预测值,再根据预测值和分类阈值进行分类的。
其中,
wŷ x+b
w
y
^
x
+
b
表示错误的分类器预测值,
wyx+b
w
y
x
+
b
表示正确的分类器预测值,
1
1
表示分类阈值。
如下图SVM的预测结果所示:
图片来源:CS231n 2016 通关 第三章-SVM与Softmax
运用公式1:
的Hinge loss
ℓ(y)=max(0,1+5.1−3.2)=2.9 ℓ ( y ) = max ( 0 , 1 + 5.1 − 3.2 ) = 2.9x2 x 2 的Hinge loss
ℓ(y)=max(0,1+2.0−4.9)=0 ℓ ( y ) = max ( 0 , 1 + 2.0 − 4.9 ) = 0x3 x 3 的Hinge loss
ℓ(y)=max(0,1+2.5−(−3.1))=6.6 ℓ ( y ) = max ( 0 , 1 + 2.5 − ( − 3.1 ) ) = 6.6则 L=13∑3i(2.9+0+6.6) L = 1 3 ∑ i 3 ( 2.9 + 0 + 6.6 )
运用公式2:
也差不多,最后的结果是 2.9,0,10.9 2.9 , 0 , 10.9 ,然后再求平均。PS: 公式2在实际中应用更多。SSVM
Hinge loss的变体也被应用于Structured SVMs中。这里不太懂…
优化
Hinge loss是一个凸函数(convex function),所以适用所有的机器学习凸优化方法。
虽然Hinge loss函数不可微,但我们可以求它的分段梯度:
∂ℓ∂wi={−t⋅xi0if t⋅y<1otherwise ∂ ℓ ∂ w i = { − t ⋅ x i if t ⋅ y < 1 0 otherwise当然,Hinge loss的梯度在 ty=1 t y = 1 点处未定义。
平滑
为了解决Hinge loss的优化问题,现在有两种平滑(smoothed)策略:
ℓ(y)=⎧⎩⎨⎪⎪12−ty12(1−ty)20if ty≤0,if 0<ty≤1,if 1≤ty ℓ ( y ) = { 1 2 − t y if t y ≤ 0 , 1 2 ( 1 − t y ) 2 if 0 < t y ≤ 1 , 0 if 1 ≤ t y
ℓ(y)=12γmax(0,1−ty)2 ℓ ( y ) = 1 2 γ max ( 0 , 1 − t y ) 2其中通常取 γ=2 γ = 2