apriori关联分析log日志

import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('max_colwidth',100)
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori


def apriori_of_log(file_path,support=0.5,keys=None):
    data = []
    temp = open(file_path,'r').readlines()
    for line in temp:
        row = line.split(' ')
        check = set(keys).issubset(set(row))
        if check:
            data.append(row)
    print('clearn')
    te = TransactionEncoder()
    one_hot = te.fit(data).transform(data)
    table = pd.DataFrame(one_hot, columns=te.columns_)
    freq = apriori(table, min_support=support, use_colnames=True)
    return freq.sort_values(by="support" , ascending=False).reset_index(drop=True)
apriori_of_log(file_path1,0.6,['xiaoqiang'])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值