Cuda和Cudnn安装

本文详细介绍了CUDA和CUDNN的安装步骤,包括如何解决安装过程中遇到的问题,以及如何确保它们与CUDA版本兼容。接着,演示了CUDNN的下载、解压和环境变量配置过程,并通过运行测试程序验证安装成功。最后,指导如何根据已安装的CUDA和CUDNN版本选择合适的PyTorch进行安装,并验证GPU是否可用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cuda&Cudnn

Cuda

先查看电脑的cuda版本, cmd窗口下输入nvidia-smi

在这里插入图片描述

https://developer.nvidia.com/cuda-toolkit-archive下载相应版本的cuda,在这里插入图片描述
选择local
在这里插入图片描述

安装时若遇到
“You already have a newer version of the NVIDIA Frameview SDK installed”
先把电脑已经存在的FrameView SDK 卸载掉,把C:\Program Files\NVIDIA Corporation\FrameViewSDK文件夹删掉
在这里插入图片描述

在这里插入图片描述
选择自定义安装, 后面全部默认就行了,
在这里插入图片描述
此时,打开环境变量查看,是有CUDA_PATH和CUDA_PATH_V版本号
在这里插入图片描述
在cmd中输入nvcc -V 查看刚刚安装的cuda
在这里插入图片描述
cuda安装成功!

Cudnn

cudnn一定要和cuda的版本兼容,否则会安装失败

cuDNN Download:https://developer.nvidia.com/rdp/cudnn-download
(第一次需要注册,注册过的直接登录)
在这里插入图片描述
注意要打勾才显示下载列表,点Archived cuDNN Releases查看更多版本,选择和cuda匹配的版本下载安装,

下载完后是一个压缩包,解压出来
在这里插入图片描述
将解压出来的bin, include, lib\x64 文件下的内容分别复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2目录下的bin, include, lib\x64 文件下

在这里插入图片描述
在这里插入图片描述
在环境变量的path中添加下面两个路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

打开cmd, 执行C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite下的bandwidthTest.exe和deviceQuery.exe检查是否安装成功:
在这里插入图片描述
在这里插入图片描述
收到两个pass则表示安装成功了

Cudnn安装完成!!

pytorch

安装好cuda和cudnn后去安装pytorch, 如果用其他框架的也同理,
https://pytorch.org/

选择自己的安装方式 (我自己安装了CUDA是11.2, 由于在这没找到pytorch11.2版本,用了这个11.1版本也能使用, 可能因为版本接近,兼容了吧),复制Command命令,
在这里插入图片描述
在这里插入图片描述
等待下载,网不好的话,可能会有点久

验证GPU是否能使用:

在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值