【算法(三·三):分治思想——逆序对计数问题】

本文介绍了如何使用分治思想和归并排序框架解决逆序对计数问题,详细阐述了算法步骤、伪代码、时间复杂度为O(nlogn)、空间复杂度O(logn+n)以及稳定性。指出该方法适用于大数据集,但对小规模数据效率不高需权衡。
摘要由CSDN通过智能技术生成

算法介绍

逆序对计数问题是一个常见的计算问题,通常用于衡量数据集中的元素之间的相对顺序关系。一个逆序对是指在一个序列中,如果存在两个元素的顺序与它们在原始序列中的顺序相反(即后一个元素比前一个元素小),那么这两个元素构成一个逆序对逆序对计数问题就是计算逆序对的数量,这对于排序算法的性能分析以及某些应用(如金融风险评估、推荐系统等)非常重要。

  • 逆序对形式化定义在这里插入图片描述
    在这里插入图片描述
  • 逆序对计数问题形式化定义
    在这里插入图片描述

算法步骤(借用归并排序的框架)

借用归并排序框架的原因是:我们发现即便利用分治思想解决此问题,其时间复杂度相对于蛮力枚举法也没有提高,原因在于被分成左右数组的有序性会直接影响算法的效率,因此利用归并排序框架(解决数组有序性)会提高算法效率。

  • 分(Divide):将给定的数组分成两部分,通常等分。找到数组的中间点,将数组分成左半部分和右半部分。
  • 治(Conquer):递归地解决左半部分和右半部分的逆序对计数问题。
  • 合(Merge):合并左半部分和右半部分的结果,并同时计算跨越左右两部分的逆序对数量。这一步是通过比较左半部分和右半部分的元素来完成的,同时统计逆序对数量。在合并的过程中,要确保合并后的子数组仍然保持有序性。(归并排序)
  • 返回结果:递归计算的结果最终返回给调用者,即得到整个数组的逆序对数量。

算法图示

在这里插入图片描述

治合

S1是指左半部分子数组逆序对数
S2是指右半部分子数组逆序对数
S3是指跨越子数组逆序对数
S是指S1+S2+S3
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
······以此类推
在这里插入图片描述
······以此类推
在这里插入图片描述
在这里插入图片描述

算法伪代码

function count_inversions(arr):
    if length(arr) <= 1:
        return arr, 0  // 基本情况:如果数组大小为 0 或 1,逆序对数量为 0
    
    mid = length(arr) // 2  // 找到数组的中间点
    left, inversions_left = count_inversions(arr[:mid])  // 递归计算左半部分的逆序对
    right, inversions_right = count_inversions(arr[mid:])  // 递归计算右半部分的逆序对
    
    merged, inversions = merge_and_count(left, right)  // 合并左右两部分,并计算跨越两部分的逆序对
    
    return merged, inversions + inversions_left + inversions_right  // 返回合并后的数组和总逆序对数量

function merge_and_count(left, right):
    merged = []  // 用于存储合并后的数组
    inversions = 0  // 用于统计逆序对数量
    i = j = 0  // 分别用于遍历左半部分和右半部分

    while i < length(left) and j < length(right):
        if left[i] <= right[j]:
            merged.append(left[i])
            i += 1
        else:
            merged.append(right[j])
            j += 1
            inversions += length(left) - i  // 统计逆序对数量

    // 处理剩余的元素
    merged.extend(left[i:])
    merged.extend(right[j:])

    return merged, inversions

// 示例用法
arr = [4, 3, 2, 1]
sorted_arr, inversions = count_inversions(arr)
print("逆序对数量:", inversions)  // 输出:6

算法性能

时间复杂度

在归并排序中,每次合并两个有序数组的时间复杂度是 O(n),因为需要遍历两个数组的所有元素,所以总的时间复杂度是 O(nlogn)。

空间复杂度

递归调用的堆栈空间:在递归过程中,每次递归都需要存储一些信息,这会占用一定的堆栈空间。递归深度取决于数组的大小,因此递归部分的空间复杂度是O(logn),其中n是数组的长度。合并过程中的临时数组:在合并两个有序数组的过程中,需要额外的空间来存储合并后的数组。这个临时数组的大小等于数组的长度,因此空间复杂度是 O(n)。综合考虑这两部分空间开销,整个算法的空间复杂度是 O(logn+n)。需要注意的是,这个算法的空间复杂度主要由递归调用的堆栈空间占用决定,而合并过程中的临时数组相对较小。因此,在实际应用中,通常可以考虑这个算法的空间复杂度为 O(logn),因为递归调用的深度是主要的空间开销。
在这里插入图片描述

稳定性

该算法是稳定的,因为它不会改变相同元素之间的相对顺序。

算法总结

总体而言,这个算法是一个高效的逆序对计数方法,尤其适用于大型数据集。其时间复杂度为 O(nlogn),在实践中表现出很好的性能。但需要注意的是,它对于较小的数据集可能不如简单的蛮力枚举效率高,因为递归和合并操作带来的开销可能会超过蛮力枚举的计算复杂度。因此,在选择算法时,要根据实际问题的规模和要求来进行权衡。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值