【算法(三·四):分治思想——快速排序】

算法介绍

快速排序是基于分治策略的一个经典算法。通过选择一个元素作为基准(也称“主元”)(pivot),将待排序的数组分成两个子数组,一个包含所有小于基准的元素,另一个包含所有大于基准的元素,然后递归地对这两个子数组进行快速排序,从而达到整个数组的排序。由于其高效性,快速排序被广泛认为是实际应用中最快的通用排序算法。其与归并排序在分治思想上的不同点在于,归并排序是“简化分解,侧重合并”,而快速排序是“侧重分解,简化合并”

算法步骤

  • 分(Divide):
    • 选择基准值(也称“主元”) (Pivot): 在待排序的数组或子数组中选择一个元素作为基准值(也称“主元”)可以选择第一个元素、最后一个元素、中间元素或使用其他选择策略,如随机选择或“三数中值”法。
    • 划分 (Partition): 通过与基准值(也称“主元”)的比较,重新排列数组使得:基准值左边的所有元素都不大于它;基准值(也称“主元”)右边的所有元素都不小于它。
    • 经过这一步骤后,基准值(也称“主元”)将被放在其最终排序位置。
  • 治(Conquer):分别对基准值(也称“主元”)左、右两边的子数组递归地应用快速排序。
  • 合(Merge):对于快速排序,这一步实际上是不必要的。这是因为在“分”阶段中,数组或子数组已经被原地调整到了部分排序的状态。所以在治的步骤完成后,整个数组或子数组已经完全排序。换言之合的过程较为简单,只是将左右两个有序子数组合并上即可。
  • 返回结果:返回合并结果,即为快速排序最终结果。
  • 特殊说明:快速排序的关键点在于“分的过程”,因此在执行“分”的算法过程时,选择不同的基准值(这也是我在上述介绍基准值时,将其颜色加深的原因),会为整个算法带来不同的效率。具体情况后续会说明。

算法图示

分治

  • 基本思想
    • 选择基准值:任选元素𝒙作为分界线,称为主元(pivot)
      在这里插入图片描述

    • 划分:交换重排,满足𝒙左侧元素小于右侧
      在这里插入图片描述

  • 实现方法一:选取固定位置为主元
    • 选择基准值:选取固定位置主元𝒙(如尾元素)
      在这里插入图片描述
    • 划分:
      • 维护两个部分的右端点变量𝒊,𝒋,图中为𝒊,𝒋的初始位置。
        在这里插入图片描述
      • 考察数组元素𝑨[𝒋] ,只和主元比较。
        ①若𝑨[𝒋] ≤ 𝒙,则交换𝑨[𝒋]和𝑨[𝒊 + 𝟏],𝒊,𝒋右移。
        ②若𝑨[𝒋] > 𝒙,则𝒋右移。在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
        ······以此类推
        在这里插入图片描述
      • 把主元放在中间作分界线。
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述
    • 递归实现分
      在这里插入图片描述

在这里插入图片描述

实现方法一:选取固定位置为主元

伪代码

ALGORITHM QuickSort(A, low, high)
    // 如果剩下的数组有两个或更多元素
    IF low < high THEN
        // 分区操作 - pivot是分区后基准元素的索引位置
        pivot = Partition(A, low, high)
        
        // 递归地对基准左侧元素排序
        QuickSort(A, low, pivot - 1)

        // 递归地对基准右侧元素排序
        QuickSort(A, pivot + 1, high)
    END IF
END ALGORITHM
ALGORITHM Partition(A, low, high)
    // 选择一个基准元素,这里我们选择最后一个元素
    pivot = A[high]
    
    // i 是跟踪小于基准的元素的“边界”
    i = low - 1
    
    // 通过检查所有元素并与基准比较来进行分区
    FOR j = low TO high - 1 DO
        IF A[j] <= pivot THEN
            i = i + 1
            // 交换 A[i] 和 A[j]
            SWAP(A[i], A[j])
        END IF
    END FOR
    
    // 把基准元素放到正确的位置
    SWAP(A[i + 1], A[high])
    
    // 返回基准的索引位置
    RETURN i + 1
END ALGORITHM

算法时间复杂度分析

  • 最好情况:数组划分后,每次主元都在中间。
    • 时间复杂度:𝑻(𝒏) = 𝟐𝑻(𝒏/𝟐) + 𝑶(𝒏) = 𝑶(𝒏𝐥𝐨𝐠𝒏)
    • 图示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 最坏情况:数组划分后,每次主元都在一侧。
    • 时间复杂度
      在这里插入图片描述

    • 图示
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

  • 总结:不同的输入导致此种实现方式不同的算法效率,我们如何摆脱输入导致最坏情况的困境?因为最差的情况是数组划分时选取固定位置主元,因此可以针对性构造最差情况。所以我们可以在数组划分时选取随机位置主元,这样无法针对性构造最差情况。这也是第二种实现方法:随机化快速排序

实现方法二:随机化快速排序

算法图示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

伪代码

ALGORITHM RandomizedQuickSort(A, low, high)
    IF low < high THEN
        // 随机分区并获取基准的索引
        pivot = RandomizedPartition(A, low, high)
        
        // 递归地对基准左侧元素排序
        RandomizedQuickSort(A, low, pivot - 1)

        // 递归地对基准右侧元素排序
        RandomizedQuickSort(A, pivot + 1, high)
    END IF
END ALGORITHM
ALGORITHM RandomizedPartition(A, low, high)
    // 随机选择一个索引在 [low, high] 范围内
    randomIndex = RANDOM(low, high)
    
    // 交换随机选择的元素和最后一个元素
    SWAP(A[randomIndex], A[high])

    // 使用标准的分区方法进行分区
    RETURN Partition(A, low, high)
END ALGORITHM

ALGORITHM Partition(A, low, high)
    pivot = A[high]
    i = low - 1
    FOR j = low TO high - 1 DO
        IF A[j] <= pivot THEN
            i = i + 1
            SWAP(A[i], A[j])
        END IF
    END FOR
    SWAP(A[i + 1], A[high])
    RETURN i + 1
END ALGORITHM

算法时间复杂度分析

随机抽取主元之后的时间复杂度是 𝑶(𝒏𝐥𝐨𝐠𝒏)

算法总结

快速排序被广泛认为是实际应用中最快的通用排序算法,并且在很多编程开源包里关于排序功能的实现都选择快速排序。尽管在最坏情况下,它的时间复杂度过高。但通过合适的策略选择基准值,如随机选择或使用“三数中值”法,可以显著地减少这种情况的发生。

排序算法的比较

在这里插入图片描述
给读者一个问题,能突破吗?

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值