面试常问:你在项目中有没有遇到什么问题,你是如何解决的
1、Fetch 抓取
Fetch 抓取是指,Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:
SELECT * FROM employees;在这种情况下,Hive 可以简单地读取 employee 对应的存储目录
下的文件,然后输出查询结果到控制台。
在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive
默认是 minimal,该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不走
mapreduce。正常情况下hive.fetch.task.conversion 有两种: none/more
2、本地模式
Hive 可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。
set hive.exec.mode.local.auto=true; //开启本地 mr
//设置 local mr 的最大输入数据量,当输入数据量小于这个值时采用 local mr 的
方式,默认为 134217728,即 128M
set hive.exec.mode.local.auto.inputbytes.max=50000000;
//设置 local mr 的最大输入文件个数,当输入文件个数小于这个值时采用 local mr
的方式,默认为 4
set hive.exec.mode.local.auto.input.files.max=10;
也就是说,要使用本地模式,文件大小和文件个数是由限制的,不过参数可以改
3、小表、大表 Join
将 key 相对分散,并且数据量小的表放在 join 的左边,这样可以有效减少内存溢出错误
发生的几率;再进一步,可以使用 map join 让小的维度表(1000 条以下的记录条数)先进
内存。在 map 端完成 reduce。
实际测试发现:新版的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表
放在左边和右边已经没有明显区别。
25M以下的叫小表——>对应着第5条:MapJoin
实际操作:
关闭 mapjoin 功能(默认是打开的) set hive.auto.convert.join = false;
4、大表 Join 大表
(1)空 KEY 过滤:用于由key是null,但是数据不需要保留的情况
提前过滤key是空的数据,增加查询效率
(2)空 key 转换:用于由key是null,但是数据还要保留的情况
把key值赋一个随机值,否则,空key就会都发送到一个reducer处理,可能会造成数据倾斜。添加值后就会随机的发给多个reducer共同处理
例子:空key转成hive+随机数 ,因为后面n.id里面没有带hive的数据,所以还保留之前null关联不上的属性
insert overwrite table jointable
select n.* from nullidtable n full join ori o on
case when n.id is null then concat(‘hive’, rand()) else n.id end
= o.id;
5、MapJoin
如果不指定 MapJoin 或者不符合 MapJoin 的条件,那么 Hive 解析器会将 Join 操作转换
成 Common Join,即:在 Reduce 阶段完成 join。容易发生数据倾斜。可以用 MapJoin 把小
表全部加载到内存在 map 端进行 join,避免 reducer 处理。
1.开启 MapJoin 参数设置
(1)设置自动选择 MapJoin
set hive.auto.convert.join = true; 默认为 true
(2)大表小表的阈值设置(默认 25M 一下认为是小表):
set hive.mapjoin.smalltable.filesize=25000000;
6、Group By
默认情况下,Map 阶段同一 Key 数据分发给一个 reduce,当一个 key 数据过大时就倾
斜了。
并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行
部分聚合,最后在 Reduce 端得出最终结果。
1.开启 Map 端聚合参数设置
(1)是否在 Map 端进行聚合,默认为 True
hive.map.aggr = true
(2)在 Map 端进行聚合操作的条目数目
hive.groupby.mapaggr.checkinterval = 100000
(3)有数据倾斜的时候进行负载均衡(默认是 false)
hive.groupby.skewindata = true!!!重要
当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输
出结果会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结
果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第
二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以
保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
7、Count(Distinct) 去重统计
数据量小的时候无所谓,数据量大的情况下,由于 COUNT DISTINCT 操作需要用一个
Reduce Task 来完成,这一个 Reduce 需要处理的数据量太大,就会导致整个 Job 很难完成,
一般 COUNT DISTINCT 使用先 GROUP BY 再 COUNT 的方式替换:
虽然会多用一个 Job 来完成,但在数据量大的情况下,这个绝对是值得的。
8、笛卡尔积
尽量避免笛卡尔积,join 的时候不加 on 条件,或者无效的 on 条件,Hive 只能使用 1 个 reducer 来完成笛卡尔积
9、行列过滤
列处理:在 SELECT 中,只拿需要的列,如果有,尽量使用分区过滤,少用 SELECT *。
行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在 Where 后面,
那么就会先全表关联,之后再过滤
实例:
1.测试先关联两张表,再用 where 条件过滤
hive (default)> select o.id from bigtable b
join ori o on o.id = b.id
where o.id <= 10;
Time taken: 34.406 seconds, Fetched: 100 row(s)
2.通过子查询后,再关联表
hive (default)> select b.id from bigtable b
join (select id from ori where id <= 10 ) o on b.id = o.id;
Time taken: 30.058 seconds, Fetched: 100 row(s)
10、动态分区调整
关系型数据库中,对分区表 Insert 数据时候,数据库自动会根据分区字段的值,将数据
插入到相应的分区中,Hive 中也提供了类似的机制,即动态分区(Dynamic Partition),只不
过,使用 Hive 的动态分区,需要进行相应的配置
1.开启动态分区参数设置
(1)开启动态分区功能(默认 true,开启)
hive.exec.dynamic.partition=true
(2)设置为非严格模式(动态分区的模式,默认 strict,表示必须指定至少一个分区为
静态分区,nonstrict 模式表示允许所有的分区字段都可以使用动态分区。)
hive.exec.dynamic.partition.mode=nonstrict
(3)在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。
hive.exec.max.dynamic.partitions=1000
(4)在每个执行 MR 的节点上,最大可以创建多少个动态分区。该参数需要根据实际
的数据来设定。比如:源数据中包含了一年的数据,即 day 字段有 365 个值,那么该参数就
需要设置成大于 365,如果使用默认值 100,则会报错。
hive.exec.max.dynamic.partitions.pernode=100
(5)整个 MR Job 中,最大可以创建多少个 HDFS 文件。
hive.exec.max.created.files=100000
(6)当有空分区生成时,是否抛出异常。一般不需要设置。
hive.error.on.empty.partition=false
(1)创建分区表都一样
create table XX(id bigint, time bigint, uid string, keyword string,
url_rank int, click_num int, click_url string)
partitioned by (p_time bigint)
row format delimited fields terminated by '\t';
插入数据时
加载数据到静态分区表中(需要标明分区值)
hive (default)> load data local inpath '/home/atguigu/ds1' into
table XX partition(p_time='20111230000010') ;
hive (default)> load data local inpath '/home/atguigu/ds2' into
table XX partition(p_time='20111230000011') ;
向动态分区表插入数据
首先设置动态分区
set hive.exec.dynamic.partition = true;
set hive.exec.dynamic.partition.mode = nonstrict;
set hive.exec.max.dynamic.partitions = 1000;
set hive.exec.max.dynamic.partitions.pernode = 100;
set hive.exec.max.created.files = 100000;
set hive.error.on.empty.partition = false;
插入(分区字段值不需要指定)
hive (default)> insert overwrite table XX
partition (p_time)
select id, time, uid, keyword, url_rank, click_num, click_url,
p_time from ori_partitioned;
11、MR优化
一、小文件进行合并
在 map 执行前合并小文件,减少 map 数:CombineHiveInputFormat 具有对小文件进行
合并的功能(系统默认的格式)。HiveInputFormat 没有对小文件合并功能。
set hive.input.format=
org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
二、复杂文件增加 Map 数
增加 map 的方法为:根据
computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M 公式,调
整 maxSize 最大值。让 maxSize 最大值低于 blocksize 就可以增加 map 的个数
三、合理设置 Reduce 数
1.调整 reduce 个数方法一
(1)每个 Reduce 处理的数据量默认是 256MB
hive.exec.reducers.bytes.per.reducer=256000000
(2)每个任务最大的 reduce 数,默认为 1009
hive.exec.reducers.max=1009 (3)计算 reducer 数的公式
N=min(参数 2,总输入数据量/参数 1)
参数2是1009 总输入量是map之前的数据量, 参数1是256000000
2.调整 reduce 个数方法二
在 hadoop 的 mapred-default.xml 文件中修改
设置每个 job 的 Reduce 个数
set mapreduce.job.reduces = 15;
默认值:set mapreduce.job.reduces =-1;
第一优先级:聚合操作,就使用一个reduce
第二优先级就是set mapreduce.job.reduces 这个设置
四、并行执行
Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段、抽样阶段、合并阶段、limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下,Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行时间缩短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成。
通过设置参数 hive.exec.parallel 值为 true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果 job 中并行阶段增多,那么集群利用率就会增加。
set hive.exec.parallel=true; //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个 sql 允许最大并行度,
默认为 8。
当然,得是在系统资源比较空闲的时候才有优势,否则,没资源,并行也起不来。
五、严格模式
Hive 提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。
通过设置属性 hive.mapred.mode 值为默认是非严格模式 nonstrict 。开启严格模式需要
修改 hive.mapred.mode 值为 strict,开启严格模式可以禁止 3 种类型的查询。
-
对于分区表,除非 where 语句中含有分区字段过滤条件来限制范围,否则不允许执行。
-
对于使用了 order by 语句的查询,要求必须使用 limit 语句。
-
限制笛卡尔积的查询。
六、 JVM 重用
JVM 重用是 Hadoop 调优参数的内容,其对 Hive 的性能具有非常大的影响,特别是对于很难避免小文件的场景或 task 特别多的场景,这类场景大多数执行时间都很短。
Hadoop 的默认配置通常是使用派生 JVM 来执行 map 和 Reduce 任务的。这时 JVM 的启动过程可能会造成相当大的开销,尤其是执行的 job 包含有成百上千 task任务的情况。JVM重用可以使得 JVM 实例在同一个 job 中重新使用 N 次。N 的值可以在 Hadoop 的mapred-site.xml 文件中进行配置。通常在 10-20 之间,具体多少需要根据具体业务场景测试得出
<name>mapreduce.job.jvm.numtasks</name>
<value>10</value>
<description>How many tasks to run per jvm. If set to -1, there is
no limit.
</description>
</property>
这个功能的缺点是,开启 JVM 重用将一直占用使用到的 task 插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job 中有某几个 reduce task 执行的时间要比其他 Reduce task 消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的 job使用,直到所有的 task 都结束了才会释放。
七、推测执行
当某个任务或几个任务速度明显低于平均速度的时候,另外开个任务,跟着同时跑,哪个跑的快要哪个,另一个干掉
如果任务量大不要这么搞,那再开一个更跑不动了
设置开启推测执行参数:Hadoop 的 mapred-site.xml 文件中进行配置
<property>
<name>mapreduce.map.speculative</name>
<value>true</value>
<description>If true, then multiple instances of some map tasks
may be executed in parallel.</description>
</property>
<property>
<name>mapreduce.reduce.speculative</name>
<value>true</value>
<description>If true, then multiple instances of some reduce tasks
may be executed in parallel.</description>
</property>
不过 hive 本身也提供了配置项来控制 reduce-side 的推测执行:
<property>
<name>hive.mapred.reduce.tasks.speculative.execution</name>
<value>true</value>
<description>Whether speculative execution for reducers should
be turned on. </description>
</property>
项目中:
1、清洗
【1】过滤
【2】去空格
按老大给的清洗粒度来清洗数据
trim()只能去开头和结尾的空格
replaceAll(‘a’,‘b’) 把a全部替换成b