时间序列分析个人学习笔记2

时间序列分析方法的依据
时间序列描述:n个随机变量在任意n个时间点 t1,t2,,tn t 1 , t 2 , … , t n 的集合
一个时间序列有联合分布函数,定义如下:
Ft1,t2,tnc1c2,,cn)=Pr(xt1c1,xt2c2,,xtncn) F t 1 , t 2 , ⋯ , t n ( c 1 , c 2 , … , c n ) = P r ( x t 1 ≤ c 1 , x t 2 ≤ c 2 , … , x t n ≤ c n ) .
但是只有随机变量的联合分布正常,才可以这么写,大多数情况下写不出联合分布函数,联合分布函数用于时间序列分析很不方便:因为n元,所以任何相应的多变量密度函数的绘图实际上都是不可能的。


如果我们想测量边际行为呢?
边际分布函数: Ft(x)=P{xtx} F t ( x ) = P { x t ≤ x }
边际密度函数: ft(x)=Ft(x)x f t ( x ) = ∂ F t ( x ) ∂ x
除此之外还有mean function

mean fuction
μxt=E(xt)=xft(x)dx μ x t = E ( x t ) = ∫ − ∞ ∞ x f t ( x ) d x
不产生误解时,可把 μxt μ x t 记作 μt μ t


例13 Mean Function of a Moving Average Series
wt w t 是white noise, μwt=E(wt)=0 μ w t = E ( w t ) = 0 ,对于所有的t成立,在white noise的图中就可以看到,曲线在0附近变动。
vt v t 是Moving Average Series的, μvt=E(vt)=13[E(wt1)+E(wt)+E(wt+1)]=0 μ v t = E ( v t ) = 1 3 [ E ( w t − 1 ) + E ( w t ) + E ( w t + 1 ) ] = 0


例14 Mean Function of a Random Walk with Drift
我们知道如果 xt x t 是Random Walk with Drift的,就有:
xt=σt+tj=1wj,t=1,2, x t = σ t + ∑ j = 1 t w j , t = 1 , 2 , …
μxt=E(xt)=σt+tj=1E(wj)=σt μ x t = E ( x t ) = σ t + ∑ j = 1 t E ( w j ) = σ t
画出来是一条斜率为 σ σ 的直线。


例15 Mean Function of Signal Plus Noise
现实中的许多应用都可以看成是一个信号波加上一个期望为0的噪声。
μxt=E(xt)=E[Acos(wt+ϕ)+wt]=E(Acos(wt+ϕ))+E(wt) μ x t = E ( x t ) = E [ A c o s ( w t + ϕ ) + w t ] = E ( A c o s ( w t + ϕ ) ) + E ( w t )
=Acos(wt+ϕ) = A c o s ( w t + ϕ )


假设 xt x t 是有限的,有如下定义
Autocovariance Function:(用来评价一个序列中两个不同时间点的线性相关性)

γx(s,t)=cov(xs,xt)=E[(xsμs)(xtμt)] γ x ( s , t ) = c o v ( x s , x t ) = E [ ( x s − μ s ) ( x t − μ t ) ] ,对于任意的s,t。

注:

  • cov是用来评价 xt,xs x t , x s 之间的独立性关系的。
  • “光滑”的序列,就算t和s相距很远,AF也会很大;
    “曲折”的序列,t,s相距很远的时候,AF几乎为0.
  • 统计术语: γx(s,t)=0 γ x ( s , t ) = 0 , xt,xs x t , x s 不是线性相关,但是他们可能还有其他的关系;如果 xt,xs x t , x s 服从二元正态分布,那么他们 γx(s,t)=0 γ x ( s , t ) = 0 就代表相互独立。
    证明:
    这里写图片描述
  • 如果s=t,那么AF就变成了方差: γx(t,t)=E[(xtμt)2]=var(xt) γ x ( t , t ) = E [ ( x t − μ t ) 2 ] = v a r ( x t )

例16 Autocovariance of White Noise
γw(s,t)=cov(ws,wt)= γ w ( s , t ) = c o v ( w s , w t ) =

  • s=t s = t , = σ2w σ w 2
  • st s ≠ t ,= 0 0

例17 Autocovariance of a Moving Average
γv(s,t)=cov(vs,vt)=cov{13(ws1+ws+ws+1),13(wt1+wt+wt+1)}.

  • s=t s = t ,
    γv(t,t)=19cov{ws1+ws+ws+1,wt1+wt+wt+1}=13σ2w γ v ( t , t ) = 1 9 c o v { w s − 1 + w s + w s + 1 , w t − 1 + w t + w t + 1 } = 1 3 σ w 2

  • s=t+1,or s=t1 s = t + 1 , o r   s = t − 1
    γv(s,t)=29σ2w γ v ( s , t ) = 2 9 σ w 2

  • otherwise
    γv(s,t)=0 γ v ( s , t ) = 0

他的Autocovariance只跟s和t的距离有关。


例18 Autocovariance of a Random Walk
xt=tj=1wj x t = ∑ j = 1 t w j
γ(s,t)=cov(xt,xs)=cov(tj=1wj,sj=1wj)=min{s,t}σ2 γ ( s , t ) = c o v ( x t , x s ) = c o v ( ∑ j = 1 t w j , ∑ j = 1 s w j ) = m i n { s , t } σ 2


Autocorrelation fuction(ACF):
ρ(s,t)=γ(s,t)γ(s,s)γ(t,t) ρ ( s , t ) = γ ( s , t ) γ ( s , s ) γ ( t , t )
如果 xsxt x s , x t 之间是线性关系, |ρ(s,t)|=1 | ρ ( s , t ) | = 1


考虑两个时间序列 yt y t xs x s :
cross-covariance function:
γxy(s,t)=cov(xs,yt)=E[(xsμxs)(ytμyt)] γ x y ( s , t ) = c o v ( x s , y t ) = E [ ( x s − μ x s ) ( y t − μ y t ) ]


cross-correlation funtion(CCF):(比例显示的cross-covariance function)
ρxy(s,t)=γxy(s,t)γx(s,s)γy(t,t) ρ x y ( s , t ) = γ x y ( s , t ) γ x ( s , s ) γ y ( t , t )


大于两个时间序列的cross-covariance function:
多元时间序列(一共有r个):
xt1,xt2,,xtr x t 1 , x t 2 , … , x t r ,
γjk(s,t)=E[(xsjμsj)(xtkμtk)]  j,k=1,2,,r. γ j k ( s , t ) = E [ ( x s j − μ s j ) ( x t k − μ t k ) ]     j , k = 1 , 2 , … , r .
当s,t历遍整个序列的时候,上述值在改变。


在例17中,可以看到,ACF只跟s和t的距离有关系。只要s和t之间的距离是h,那么s和h的具体位置并不重要。当平均值不变时,这个概念称为弱平稳性(weak stationarity)。

Strictly Stationary Time Series
一个时间序列中任意可能出现的变量集 {xt1,xt2,,xtk} { x t 1 , x t 2 , … , x t k } 等同于 {xt1+h,xt2+h,,xtk+h} { x t 1 + h , x t 2 + h , … , x t k + h } ,这就意味着:
Pr{xt1c1,,xtkck}=Pr{xt1+hc1,,xtk+hck} P r { x t 1 ≤ c 1 , … , x t k ≤ c k } = P r { x t 1 + h ≤ c 1 , … , x t k + h ≤ c k }
对于任意的 k=1,2, k = 1 , 2 , … ,任意的时间点 t1,t2,,tk t 1 , t 2 , … , t k ,任意的数 c1,c2,,ck c 1 , c 2 , … , c k ,以及任意的时间变换 h=0,±1,±2,. h = 0 , ± 1 , ± 2 , … .

也就是说:变量子集的所有多变量分布函数必须与移位集合(对应于任意移位参数h)的变量的多元分布函数一致。

  • 假设 k=1 k = 1 , Pr(xsc)=Pr(xtc) P r ( x s ≤ c ) = P r ( x t ≤ c ) ,任意s,t都是成立的。
    简单来说,就是一个时间序列在下午一点和晚上10点的值是一样的。如果mean function存在,假设是 μt μ t ,那就代表 μt=μs μ t = μ s ,对于任意的t,s都是成立的,这就说明这个时间序列的mean function是一个常数。所以, random walk with drift就不是严格稳定的。
  • 当k=2的时候,有 Pr{xt1c1,xt2c2}=Pr{xt1+hc1,xt2+hc2} P r { x t 1 ≤ c 1 , x t 2 ≤ c 2 } = P r { x t 1 + h ≤ c 1 , x t 2 + h ≤ c 2 } ,对于任意的s,t,h。我么可以知道这两个时间序列的AF就是:
    γ(s,t)=γ(s+h,t+h) γ ( s , t ) = γ ( s + h , t + h )

    这就说明他们的AF只跟时间差有关,跟s,t无关。

Weakly Stationary:
一个时间序列 xt x t ,满足:

  • mean function μt μ t ,是常数跟时间t无关;、
  • AF, γ(s,t) γ ( s , t ) 只跟s和t的距离有关。
    (后面用Stationary代表Weakly Stationary)

注:
- 如果一个时间序列是Gaussian(序列里面所有有限的分布都是Gaussian)那么从Stationarity就可以推出Strictly Stationary。
- μt μ t 固定,记为 μ μ
- s=t+h s = t + h γ(t+h,t)=cov(xt+h,xt)=cov(xh,x0)=γ(h,0) γ ( t + h , t ) = c o v ( x t + h , x t ) = c o v ( x h , x 0 ) = γ ( h , 0 )
改写 γ(s,t) γ ( s , t ) γ(h) γ ( h )


AF of a stationary time series:
γ(h)=cov(xt+h,xt)=E[(xt+hμ)(xtμ)] γ ( h ) = c o v ( x t + h , x t ) = E [ ( x t + h − μ ) ( x t − μ ) ]

ACF of a stationary time series:
ρ(h)=γ(t+h,t)γ(t+h,t+h)γ(t,t)=γ(h)γ(0) ρ ( h ) = γ ( t + h , t ) γ ( t + h , t + h ) γ ( t , t ) = γ ( h ) γ ( 0 )

由Cauchy-Schwarz不等式知道: 1ρ(h)1 − 1 ≤ ρ ( h ) ≤ 1 ,对于任意的h。


例19 Stationary of WN

  • μwt=0 μ w t = 0 ;
  • h=0, γw(h)=cov(wt,wt)=σ2w γ w ( h ) = c o v ( w t , w t ) = σ w 2
    h0,γw(h)=0 h ≠ 0 , γ w ( h ) = 0

  • ρw(0)=1,ρw(h)=0,when h0 ρ w ( 0 ) = 1 , ρ w ( h ) = 0 , w h e n   h ≠ 0

所以WN是stationary,如果WN还是Gaussian分布,那么WN还是Strictly Stationary,还可以知道他们还是相互独立(iid)的.


例20 Stationary of Moving Average
由例13和例17知道,Moving Average也是stationary。

  • μ=0 μ = 0
  • h=0,γ(h)=39σ2w h = 0 , γ ( h ) = 3 9 σ w 2 ρ(h)=1 ρ ( h ) = 1 ;
  • |h|=1,γ(h)=29σ2w | h | = 1 , γ ( h ) = 2 9 σ w 2 ρ(h)=23 ρ ( h ) = 2 3 ;
  • |h|=2,γ(h)=19σ2w | h | = 2 , γ ( h ) = 1 9 σ w 2 ρ(h)=13 ρ ( h ) = 1 3 ;
  • |h|>2,γ(h)=0 | h | > 2 , γ ( h ) = 0 ρ(h)=0 ρ ( h ) = 0 .

例21 Random Walk is Not Stationary
因为 γ(s,t)=min{s,t}σ2w γ ( s , t ) = m i n { s , t } σ w 2 跟时间有关,同时 μxt=δt μ x t = δ t


Trend Stationarity
考虑 xt=α+βt+yt x t = α + β t + y t , 其中 yt y t 是Stationary:

  • μx,t=E(xt)=α+βt+μy μ x , t = E ( x t ) = α + β t + μ y ,与时间有关。
  • γx(h)=cov(xt+h,xt)=E[(xt+hμx,t+h)(xtμx,t)]=E[(yt+hμy)(ytμy)]=γy(h). γ x ( h ) = c o v ( x t + h , x t ) = E [ ( x t + h − μ x , t + h ) ( x t − μ x , t ) ] = E [ ( y t + h − μ y ) ( y t − μ y ) ] = γ y ( h ) .

该模型可被视为具有线性趋势的Stationary,被称作trend stationary。


AF of a stationary process 有哪些性质呢?

  1. γ(h) γ ( h ) 是非负的,任意的 n1 n ≥ 1 ,常数 a1,,an a 1 , … , a n ,

    0var(a1x1++anxn)=j=1nk=1najakγ(jk) 0 ≤ v a r ( a 1 x 1 + ⋯ + a n x n ) = ∑ j = 1 n ∑ k = 1 n a j a k γ ( j − k )

  2. γ(0)=E[(xtμ)2] γ ( 0 ) = E [ ( x t − μ ) 2 ] ,由cauchy-schwarz不等式知道:

    |γ(h)|γ(0) | γ ( h ) | ≤ γ ( 0 )

  3. γ(h)=γ(h) γ ( h ) = γ ( − h ) ,理由:

    γ((t+h)t)=cov(xt+h,xt)=cov(xt,xt+h)=γ(t(t+h)) γ ( ( t + h ) − t ) = c o v ( x t + h , x t ) = c o v ( x t , x t + h ) = γ ( t − ( t + h ) )

  4. 图像关于0对称
    这里写图片描述

jointly stationary:
xt,yt x t , y t 都是时间序列,而且都是stationary,他们的cross-covariance有如下性质:

γxy(h)=cov(xt+h,yt)=E[(xt+hμx)(ytμy)] γ x y ( h ) = c o v ( x t + h , y t ) = E [ ( x t + h − μ x ) ( y t − μ y ) ]
只跟h有关,那他们就是jointly stationary的。


cross-correlation function(CCF)
xt,yt x t , y t 是jointly stationary的,CCF定义如下:

ρxy(h)=γxy(h)γx(0)γy(0) ρ x y ( h ) = γ x y ( h ) γ x ( 0 ) γ y ( 0 )

  • 这个值被-1和1界定。
  • CCF并不关于0对称,因为 cov(x2,y1) c o v ( x 2 , y 1 ) cov(x1,y2) c o v ( x 1 , y 2 ) 不一定相等。
  • ρxy(h)=ρyx(h) ρ x y ( h ) = ρ y x ( − h )

例24 Prediction Using Cross-Correlation
考虑确定两个序列之间可能的前导或滞后关系的问题:
yt=Axtl+wt y t = A x t − l + w t

  • l>0 l > 0 , xt x t is leading yt y t
  • l<0 l < 0 , xt x t is lagging yt y t

    我们希望知道他们之间是leading还是lagging的,从而就可以从 xt x t 中预测出 yt y t ,假设噪音 wt w t xt x t 序列之间是不相关的,那么CCF就是:

    γyx(h)=cov(yt+h,xt)=cov(Axt+hl+wt+h,xt) γ y x ( h ) = c o v ( y t + h , x t ) = c o v ( A x t + h − l + w t + h , x t )

    =cov(Axt+hl,xt)=Aγx(hl) = c o v ( A x t + h − l , x t ) = A γ x ( h − l )

    由Cauchy-Schwarz公示知道, γx(hl) γ x ( h − l ) 的最大值是 γx(0) γ x ( 0 ) ,此时 h=l h = l .
    when l=5:
    这里写图片描述


Linear Process
white noise: wt w t
xt=μ+j=ψjwtj,   j=|ψj|< x t = μ + ∑ j = − ∞ ∞ ψ j w t − j ,       ∑ j = − ∞ ∞ | ψ j | < ∞
我们还可以计算出他的AF:

γx(h)=σ2wj=ψj+hψj,  for all h0 γ x ( h ) = σ w 2 ∑ j = − ∞ ∞ ψ j + h ψ j ,     f o r   a l l   h ≥ 0

注:

  • γx(h)=γx(h) γ x ( h ) = γ x ( − h ) ;
  • j=ψ2j< ∑ j = − ∞ ∞ ψ j 2 < ∞ ,就知道 xt x t 有方差;
  • 大多数模型(causal linear process),都有 ψj=0, for j<0 ψ j = 0 ,   f o r   j < 0 .

Gaussian process:
一个时间序列 {xt} { x t } ,对于任意的n,任意n个时间点 t1,t2,,tn t 1 , t 2 , … , t n x=(xt1,xt2,,xtn)T x = ( x t 1 , x t 2 , … , x t n ) T 都是多元正态分布的。

E(x)=μ=(μt1,,μtn)T E ( x ) = μ = ( μ t 1 , … , μ t n ) T n×n n × n 的方差矩阵 var(x)=Γ={γ(ti,tj);i,j=1,,n} v a r ( x ) = Γ = { γ ( t i , t j ) ; i , j = 1 , … , n } ,假设都是正的,那么多元正态密度函数就可以写成:

f(x)=(2π)n2|Γ|12exp{12(xμ)TΓ1(xμ)}, f ( x ) = ( 2 π ) − n 2 | Γ | − 1 2 e x p { − 1 2 ( x − μ ) T Γ − 1 ( x − μ ) } ,

注:

  • 如果一个Gaussian时间序列是weakly stationary,那么他的 μt μ t γ(ti,tj) γ ( t i , t j ) 都是和时间差有关,而和具体的时间没有关系,由 f(x) f ( x ) 的表达式可以知道, f(x) f ( x ) 也只是和时间差有关和真正的时间无关,所以这个时间序列还是strictly stationary。
  • Wold Decomposition:A Stationary non-deterministic time series is a causal linear process.
    Gaussian time series 一定是 causal linear process, wt iid N(0,σ2w) w t ∼   i i d   N ( 0 , σ w 2 )
  • 边缘分布是高斯分布的序列不一定是高斯的,这样的情况很常见, XY X , Y 是正态分布的,但是 (X,Y) ( X , Y ) 不是二元正态分布的。举例:X,Z是相互独立且成正态分布的,当 XZ>0, Y=Z X Z > 0 ,   Y = Z ,当 XZ0, Y=Z X Z ≤ 0 ,   Y = − Z .
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值