1. 概述
RedisAI是一个在Redis上运行的AI推理引擎,可以使用RedisAI在内存中快速地进行深度学习模型的推理和预测。RedisAI提供了多种接口,包括Python和C API以及命令行工具等,但本文将主要介绍如何使用Golang语言接口来使用RedisAI。
2.安装golang依赖库
首先,我们需要在Go项目中引入RedisAI的Golang客户端库。可以使用以下命令来获取并安装最新版本的RedisAI Golang客户端库:
go get -u github.com/RedisAI/redisai-go/v2
然后,在代码中导入github.com/RedisAI/redisai-go/v2包即可开始使用RedisAI Golang客户端。
3.完整代码示例
下面是一个使用RedisAI进行模型推理的简单示例:
package main
import (
"fmt"
"github.com/RedisAI/redisai-go/v2/redisai"
"github.com/gomodule/redigo/redis"
"github.com/pkg/errors"
)
func main() {
// 创建Redis连接
redisClient, err := redis.Dial("tcp", "localhost:6379")
if err != nil {
panic(errors.Wrap(err, "failed to connect to Redis"))
}
defer redisClient.Close()
// 加载模型
modelName := "my_model"
modelPath := "/path/to/model.pb"
model, err := redisai.TFModelCreate(modelName, redisai.DeviceCPU, modelPath)
if err != nil {
panic(errors.Wrapf(err, "failed to create TensorFlow model %s", modelName))
}
// 创建输入张量
input := []float32{1.0, 2.0, 3.0}
inputTensor, err := redisai.TensorCreate(redisai.Float32, []int{len(input)}, input)
if err != nil {
panic(errors.Wrap(err, "failed to create input tensor"))
}
// 进行推理计算
resultTensor, err := redisai.ModelRun(model, []redisai.Tensor{inputTensor})
if err != nil {
panic(errors.Wrap(err, "failed to run model"))
}
// 获取输出结果
result, err := resultTensor.Data(redisai.Float32)
if err != nil {
panic(errors.Wrap(err, "failed to get result"))
}
// 输出结果
fmt.Println(result)
}
在上面的示例中,我们首先使用redis.Dial方法创建了一个Redis连接对象redisClient。然后,我们使用redisai.TFModelCreate方法创建了一个名为my_model的TensorFlow模型对象model。需要注意的是,我们需要在Redis服务器上提前将模型文件上传到指定目录下,以便RedisAI能够访问。在本例中,模型文件的路径为/path/to/model.pb。
接着,我们创建了一个输入数据input,并使用redisai.TensorCreate方法将其封装成一个redisai.Tensor对象inputTensor。然后,我们调用redisai.ModelRun方法进行推理计算,并将输入数据inputTensor作为参数传入。
最后,我们使用resultTensor.Data方法将输出结果转换成一个float32类型的数组result,并输出到控制台。
当然,上述示例只是RedisAI在Golang中的简单应用,RedisAI还提供了更多功能强大的接口,例如支持多种深度学习框架、支持多个模型同时加载、支持自定义数据类型等。可以参考RedisAI Golang客户端库的文档和示例代码来深入学习和使用。