tensorflow实例2|tensorflow

import matplotlib.pyplot as plt

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

#图片框
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.show()
#如果想要连续的画,要用ion
plt.ion()

for i in range(1000):
	if i%50==0:
		try:
		ax.lines.remove(lines[0])
		except Exception:
		pass
		prediction_value = sess.run(prediction,feed_dict{xs:x_data})
		lines = ax.plot(x_data,prediction_value,'r-',lw=5)
		#lw:line width
		
		plt.puase(0,1)

Stochastic Gradient Descent(SGD)

W += -Learning rate*dx
(但是走的路会很曲折,所以耗时会很长)

Momentum
m = b1m - Learning ratedx
W += m

AdaGrad
v += dx^2
W += -Learning rate *dx/ (v)^1/2

RMSProp
Monmentum + AdaGrad

Adam
m = b1*m + (1-b1)dx
v = b2
v + (1-b2)*dx^2

W += -Learning rate*m/(v)^1/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值