最大似然估计法求解逻辑回归问题

1. 逻辑回归
逻辑回归是一个二分类问题。尽管与线性回归模型所解决的问题不同,但他们有许多相似之处。线性回归拟合线(超平面)来预测真实值,逻辑回归拟合线(超平面)来将样本分开。
相比于线性回归模型:
y ^ = X × β , \hat{y} = X \times \beta, y^=X×β,
逻辑回归模型通过非线性函数(sigmoid)将输入的加权和压缩到0-1:
y ^ = 1 1 + e x p ( − ( X × β ) ) . \hat{y} = \frac{1}{1 + exp(-(X \times \beta))}. y^=1+exp((X×β))1.
y-hat服从binomial probability distribution
和线性回归模型求解一样,我们可以通过最小二乘法or最大似然估计法来求解逻辑回归模型。


2. Log-Odds
在开始介绍基于最大似然估计法之前,我们先来理解一下逻辑回归真正在计算什么? 这可能是最难理解的一部分。

什么是odds?odds通常由 (wins:losses)来表示。给定逻辑回归模型预测的类别为1的概率p下,我们称odds of success(成功的机率)为:
o d d s = o d d s   o f   s u c c e s s = p 1 − p . \rm odds = odds \ of \ success = \frac{p}{1 - p}. odds=odds of success=1pp.

逻辑回归模型中线性部分(输入的加权和)计算的是一个成功事件(类别为1)的log-odds,换句话说,log-odds是属于类别1的样本的加权和:
l o g   o d d s = β 0 + β 1 × x 1 + . . . + β n × x n . \rm log \ odds = \beta_0 +\beta_1 \times x_1 + ... + \beta_n \times x_n . log odds=β0+β1×x1+...+βn×xn.

同时:
o d d s = e x p ( l o g   o d d ) . \rm odds = exp(log \ odd). odds=exp(log odd).
因此:
p = o d d s o d d s + 1 . p = \frac{\rm odds}{\rm odds + 1}. p=odds+1odds.
p = 1 1 + e x p ( − l o g − o d d s ) p = \frac{1}{1 + \rm exp(-log-odds)} p=1+exp(logodds)1
这显示了我们如何通过逻辑回归模型计算从log-odds到odds,再到类别1的概率的过程。


3. 最大似然估计
和线性回归模型一样,我们希望最大化:
P ( X ; θ ) P(X; \theta) P(X;θ)
m a x ∑ l o g   P ( y i ∣ x i ; h ) 。 \rm max \sum log \ P(y_i | x_i; h)。 maxlog P(yixi;h)

我们将模型假设h替换为逻辑回归模型。
m i n ∑ − ( l o g ( y i ^ ) × y i + l o g ( 1 − y i ^ × ( 1 − y i ) ) \rm min \sum -(log(\hat{y_i}) \times y_i + log(1-\hat{y_i} \times (1-y_i)) min(log(yi^)×yi+log(1yi^×(1yi))

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值