时间序列处理之change point detection

在时间序列分析任务中,应用ruptures库进行changepointdetection。ruptures是一个Python库,提供了多种检测算法,并在官方网站上有详细的文档和示例。通过pip或conda可以方便地安装此库。
摘要由CSDN通过智能技术生成

时间序列处理之change point detection


最近在做时间序列分析的任务,其中需要用到change point detection 的技术,由于change point不是我研究的重点,打算找找python有没有什么library可以直接用,刚好找到一个还不错的library叫ruptures,写出来分享一下


ruptures

直接上链接:https://centre-borelli.github.io/ruptures-docs/
网站上描述的非常详细,如果想了解detection的算法的话也有相关的论文。user guide 里有所有functions的用法,并且附有例子

pip:

pip install ruptures

conda:

conda install ruptures

https://centre-borelli.github.io/ruptures-docs/


贝叶斯在线变点检测(Bayesian Online Change Point Detection)是一种用于监测数据序列中发生变化点的方法。变化点是指数据中突然发生结构性改变的位置。例如,时间序列数据中可能存在着突然变化的趋势、分布或统计属性的变化。此方法基于贝叶斯统计理论,通过实时更新来自先验和后验分布的概率,实现对数据变化的准确检测。 该方法的主要步骤如下:首先,我们需要确定模型的参数和先验分布,这些参数可以表示出数据变化点的可能性。然后,我们将先验分布与观测到的数据相结合,计算出观测数据的后验分布。接下来,根据贝叶斯准则,我们可以基于当前的数据样本来更新分析模型的参数,并计算出下一个时间点的后验分布。最后,通过比较不同时间点的后验概率,可以确定是否出现了变化点。 贝叶斯在线变点检测的优点在于它是一个动态检测方法,能够随着观测数据的实时更新进行连续的监测。相比于传统的离线方法,它的优势在于不需要存储大量的历史数据,且能够对变化进行实时响应。此外,该方法还允许用户根据实际情况设定先验分布,从而增加了模型的灵活性。 贝叶斯在线变点检测在实际应用中具有广泛的应用价值。例如,在金融领域,它可以用于检测市场行情的变化点,帮助投资者及时调整投资策略。在工业制造领域,它可以用于监测生产线的异常情况,实现故障预警和预防性维护。在环境监测领域,它可以用于检测大气污染物的突然变化,提醒人们采取相应的防护措施。 综上所述,贝叶斯在线变点检测是一种基于贝叶斯统计理论的方法,能够实时监测数据序列中的变化点。它具有动态性、灵活性和广泛的应用价值,可在许多领域中发挥重要作用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值