主观贝叶斯方法

本文介绍了主观Bayes方法中如何表示和处理证据的不确定性,包括证据的可信度表示、组合证据的不确定性法则,并详细阐述了不确定性的传递算法,包括肯定存在、肯定不存在和不确定情况下的后验概率计算。此外,文中还讨论了LS和LN的性质,以及如何合成结论不确定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.不确定性的表示

2.证据的不确定性:


在主观Bayes方法中,证据的不确定性也用概率表示。对于证据E,由用户根据观察S给出P(E|S),即动态强度。 由于主观给定P(E|S)有所困难,所以实际中可以用可信度C(E|S)代替P(E|S)。例如在PROSPECTOR中C(E|S)和P(E|S)遵从如下关系

 

3.组合证据的不确定性:

可以采用最大最小法。

1.当组合证据是多个单一证据的合取时,即 E=E1 AND E2 AND … AND En
则:P(E|S)=min{P(E1|S),P(E2|S),…,P(En|S)}
2.当组合证据是多个单一证据的析取时,即 E=E1 OR E2 OR … OR En
则:P(E|S)=max{P(E1|S),P(E2|S),…,P(En|S)}
3.对于“¬”运算则: P(¬E|S)=1-P(E|S)
 

不确定性的传递算法:

主观Bayes方法推理的任务就是根据证据E的概率P(E)及LS、LN的值,把H的先验概率P(H)更新为后验概率P(H|E)或P(H|¬E)。即

确定后验概率的方法随着证据肯定存在,肯定不存在,或者不确定而有所不同。

1.证据肯定存在时

引入几率函数Θ(x),它与概率的关系为: Θ(x)=P(x)/(1-P(x)),    P(x)=Θ(x)/(1+Θ(x)) 在证据肯定存在时,P(E)=P(E|S)=1。
由Bayes公式得: P(H|E)=P(E|H)×P(H)/P(E)            (1)
                           P(¬H|E)=P(E|¬H)×P(¬H)/P(E)        (2)
(1)式除以(2)式得: P(H|E)/P(¬H|E)=P(E|H)/P(E|¬H)×P(H)/P(¬H)
由LS和几率函数的定义得: Θ(H|E)=LS×Θ(H)      即      P(H|E)=LS×P(H) / [(LS-1)×P(H)+1]

2.证据肯定不存在时

在证据肯定不存在时,P(E)=P(E|S)=0, P(¬E)=1。
由Bayes公式得: P(H|¬E)=P(¬E|H)×P(H)/P(¬E)            (1)
                           P(¬H|¬E)=P(¬E|¬H)×P(¬H)/P(¬E)        (2)
(1)式除以(2)式得: P(H|¬E)/P(¬H|¬E)=P(¬E|H)/P(¬E|¬H)×P(H)/P(¬H)
由LN和几率函数的定义得: Θ(H|¬E)=LN×Θ(H)      即        P(H|¬E)=LN×P(H) / [(LN-1)×P(H)+1]

3.证据不确定时

当0<P(E|S)<1时,应该用杜达等人1976年证明的下述公式计算后验概率P(H|S):
P(H|S)=P(H|E)×P(E|S)+P(H|¬E)×P(¬E|S)
当P(E|S)=1时,证据肯定存在。
当P(E|S)=0时,证据肯定不存在。
当P(E|S)=P(E)时,证据E与观察S无关。由全概率公式得: P(H|S)=P(H|E)×P(E)+P(H|¬E)×P(¬E)=P(H)
当P(E|S)为其它值时,通过分段线性插值计算P(H|S),即

 

如果初试证据的不确定性是由可信度C(E|S)给出的,则此时只要把P(E|S)与C(E|S)的对应关系代入EH公式中,就可以得到用可信度C(E|S)计算P(E|S)的公式:


充分性度量LS的性质

当LS>1时, Θ(H|E)=LS×Θ(H)>Θ(H),表明由于证据E的存在,增强了H为真的程度。
当LS=1时, Θ(H|E)=LS×Θ(H)=Θ(H),表明E与H无关。
当LS<1时, Θ(H|E)=LS×Θ(H)<Θ(H),表明由于证据E的存在,减小了H为真的程度。
当LS=0时, Θ(H|E)=LS×Θ(H)=0,表明由于证据E的存在,导致H为假。

必要性度量LN的性质

当LN>1时,Θ(H|¬E)=LN×Θ(H)>Θ(H),表明由于证据E不存在,增强了H为真的程度。
当LN=1时,Θ(H|¬E)=LN×Θ(H)=Θ(H),表明¬E与H无关。
当LN<1时,Θ(H|¬E)=LN×Θ(H)<Θ(H),表明由于证据E不存在,减小了H为真的程度。
当LN=0时, Θ(H|¬E)=LN×Θ(H)=0,表明由于证据E不存在,导致H为假。
注意:由于E和¬E不可能同时支持H或同时反对H,所以在一条知识中的LS和LN不应该出现如下情况: LS>1, LN>1 LS<1, LN<1

结论不确定性的合成算法

若有n条知识都支持相同的结论,而且每条知识的前提条件所对应的证据Ei(i=1,2,…,n)都有相应的观察Si与之对应,此时只要先对每条知识分别求出Θ(H|Si),然后运用下述公式求出Θ(H|S1S2…Sn):

例题:


主观BAYES方法的特点

优点:
主观Bayes方法中的计算公式大多是在概率论的基础上推导出来,具有较坚实的理论基础。
知识的静态强度LS及LN是由领域专家给出,避免了大量的数据统计工作。
LS和LN比较全面的反映了证据与结论间的因果关系,使推出的结论有较准确的确定性。
主观Bayes方法不仅给出了证据肯定存在、肯定不存在时更新后验概率的方法,还给出了证据不确定时的方法,实现了不确定性的逐级传递。
缺点:
它要求领域专家在给出知识时,同时给出H的先验概率P(H),这比较困难。
Bayes定理要求事件间独立,使其应用受限制。













 

### 主观逻辑的概念与应用 主观逻辑是一种基于概率理论的形式化推理框架,用于处理不确定性信息。它不仅扩展了经典布尔逻辑的能力,还能表达和操作带有置信度的概率陈述[^1]。在计算机科学领域,主观逻辑被广泛应用于人工智能、决策支持系统、信息系统建模等方面。 #### 1. 主观逻辑的核心概念 主观逻辑允许将命题视为随机变量,并赋予这些变量特定的信念分布。这种分布通常表示为三元组 \((b, u, d)\),其中 \(b\) 表示相信程度,\(u\) 表示不确定性程度,而 \(d\) 则代表不相信的程度。这使得主观逻辑能够更好地模拟人类思维过程中的不完全信任状态[^2]。 #### 2. 主观逻辑在计算机科学中的具体应用 ##### (1) **专家系统的构建** 在专家系统中,知识库往往包含大量不确定性的规则或事实。通过采用主观逻辑来量化这些规则的信任水平,可以显著提升系统的鲁棒性和适应能力。例如,在医疗诊断场景下,医生的经验可以通过主观逻辑转化为可计算的信任值,从而辅助自动化诊疗工具做出更加精准的判断[^5]。 ##### (2) **社交网络分析** 当涉及大规模社交网络数据分析时,节点间的关系可能充满噪声或者偏差。借助主观逻辑模型,研究人员能有效评估不同个体之间意见传播的可能性及其可信度。这种方法特别适合于舆情监控、推荐算法优化等领域[^3]。 ```python def calculate_opinion(opinions): """ 使用主观逻辑计算综合观点。 参数: opinions -- 输入的意见列表 [(belief, uncertainty, disbelief), ...] 返回: 综合后的意见 (belief, uncertainty, disbelief) """ total_b = sum([o[0] for o in opinions]) total_u = sum([o[1] for o in opinions]) total_d = sum([o[2] for o in opinions]) norm_factor = total_b + total_u + total_d return (total_b / norm_factor, total_u / norm_factor, total_d / norm_factor) opinion_list = [(0.7, 0.2, 0.1), (0.8, 0.1, 0.1)] result = calculate_opinion(opinion_list) print(f"Combined opinion: {result}") ``` ##### (3) **网络安全威胁检测** 面对日益复杂的网络攻击行为,传统的二值判定机制难以满足需求。利用主观逻辑建立动态更新的安全评分体系,则可以帮助管理员快速定位潜在风险源并采取相应防护措施[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值