海伯伦定理

谓词公式通过等价关系及推理规则化成相应的子句集

在谓词逻辑中,把原子谓词公式及其否定统称为文字。
定义3.5:任何文字的析取式称为子句。     例如: P(x)∨Q(x), ¬P(x,f(x))∨Q(x,g(x))
定义3.6:不包含任何文字的子句称为空子句。 空子句不含有文字,不能被任何解释满足,所以空子句是永假的,不可满足的。
任何谓词公式都可通过等价关系及推理规则化成相应的子句集。

1. 利用等价关系消去“→”和“↔”  ,例如公式

可等价变换成

2. 利用等价关系把“¬”移到紧靠谓词的位置上 ,上式经等价变换后

3. 重新命名变元,使不同量词约束的变元有不同的名字 ,上式经变换后

4. 消去存在量词
a.存在量词不出现在全称量词的辖域内,则只要用一个新的个体常量替换受该量词约束的变元,然后把存在量词删除。
    
b.存在量词位于一个或者多个全称量词的辖域内,此时要用Skolem函数f(x1,x2,…,xn)替换受该存在量词约束的变元。     
上式中存在量词(\existsy)及(\existsz)都位于(\forallx)的辖域内,所以需要用Skolem函数替换,设替换y和z的Skolem函数分别是f(x)和g(x),则替换后得到

5. 把全称量词全部移到公式的左边
6. 利用等价关系把公式化为Skolem标准形

Skolem标准形的一般形式是

其中,M是子句的合取式,称为Skolem标准形的母式。     上式化为Skolem标准形后得到

7. 消去全称量词
8. 对变元更名,使不同子句中的变元不同名 上式化为


9. 消去合取词,就得到子句集

等价性

定理3.1: 设有谓词公式F,其标准形的子句集为S,则F不可满足性的充要条件是S不可满足。 所以: 如果要证明一个谓词公式是不可满足的,则只要证明其相应的子句集是不可满足的就可以了

海伯伦域

判断一个子句的不可满足性,需要对个体域上的一切解释逐个进行判定,只有当子句对任何非空个体域上的任何一个解释都是不可满足的,该子句才是不可满足的。 海伯伦构造了一个特殊的域(海伯伦域),并证明只要对这个特殊域上的一切解释进行判定,就可知子句集是否不可满足。

定义3.7 :设S为子句集,则按下述方法构造的域H∞称为海伯伦域,记为H域。   
 (1)令H0是S中所有个体常量的集合,若S中不包含个体常量,则令H0={a},其中a为任意指定的一个个体常量。   
 (2)令Hi+1=Hi∪{S中所有n元函数f(x1,…,xn)|xj(j=1,…,n)是Hi中的元素},其中i=0,1,2,…。

例. 求子句集S={P(x)∨Q(x),R(f(y))}的H域。
解:此例中没有个体常量,任意指定一个常量a作为个体常量,得到
H0={a}
H1={a,f(a)}
H2={a,f(a),f(f(a))}
H3={a,f(a),f(f(a)),f(f(f(a)))}

H∞={a,f(a),f(f(a)),f(f(f(a))),…}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值