不确定性推理——主观贝叶斯方法matlab实现

一、实验名称

主观贝叶斯

二、实验目的

在证据不确定的情况下,根据充分性量度LS、必要性量度LN、E的先验概率P(E)和H的先验概率P(H)作为前提条件,分析P(H/S)和P(E/S)的关系。

三、实验原理及内容阐述

1、 证据不确定性的表示

  1. 在主观Bayes方法中,证据的不确定性用概率表示。对于证据E,由用户根据观察S给出P(E|S),即动态强度。用P(E|S)描述证据的不确定性 (证据E不是可以直接观测的)。
  2. 证据肯定存在时,P(E|S)=1;
  3. 证据肯定不存在时, P(E|S)=0;
  4. 证据具有不确定性时, 0<P(E|S)<1。

2、LN和LS的意义

  1. 当证据E愈是支持H为真时,则应是使相应的LS值愈大。若证据E对H愈是必要,则相应LN的值愈小。。
  2. 不能出现LS>1且LN>1的取值
    因为: LS>1:表明证据E是对H有利的证据。
    LN>1:表明证据¬E是对H有利的证据。
  3. 不能出现LS<1且LN<1的取值
    因为:LS<1: 表明证据 E是对H不利的证据。
    LN<1:表明证据¬E是对H不利的证据。
  4. 一般情况下,取LS>1, LN<1。

3、证据不确定的情况

在现实中,证据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值