主观贝叶斯方法matlab实现
一、实验名称
主观贝叶斯
二、实验目的
在证据不确定的情况下,根据充分性量度LS、必要性量度LN、E的先验概率P(E)和H的先验概率P(H)作为前提条件,分析P(H/S)和P(E/S)的关系。
三、实验原理及内容阐述
1、 证据不确定性的表示
- 在主观Bayes方法中,证据的不确定性用概率表示。对于证据E,由用户根据观察S给出P(E|S),即动态强度。用P(E|S)描述证据的不确定性 (证据E不是可以直接观测的)。
- 证据肯定存在时,P(E|S)=1;
- 证据肯定不存在时, P(E|S)=0;
- 证据具有不确定性时, 0<P(E|S)<1。
2、LN和LS的意义
- 当证据E愈是支持H为真时,则应是使相应的LS值愈大。若证据E对H愈是必要,则相应LN的值愈小。。
- 不能出现LS>1且LN>1的取值
因为: LS>1:表明证据E是对H有利的证据。
LN>1:表明证据¬E是对H有利的证据。 - 不能出现LS<1且LN<1的取值
因为:LS<1: 表明证据 E是对H不利的证据。
LN<1:表明证据¬E是对H不利的证据。 - 一般情况下,取LS>1, LN<1。
3、证据不确定的情况
在现实中,证据