
C-F模型
C-F模型是基于可信度表示的不确定性推理的基本方法,其它可信度方法都是在此基础上发展起来的。
知识不确定性的表示在该模型中,知识是用产生式规则表示的,其一般形式为:
IF E THEN H (CF(H,E))
其中,CF(H,E)是该条知识的可信度,称为可信度因子或规则强度,即静态强度。一般CF(H,E)∈[-1,1]。
证据的不确定性
证据的不确定性也用可信度因子表示。 如CF(E)=0.6
注意: CF(H,E)表示知识的强度,即静态强度;
CF(E)表示证据的强度,即动态强度。
可采用最大最小法。 若E=E1 AND E2 AND…AND En, 则 CF(E)=min{CF(E1),CF(E2),…,CF(En)}
若E=E1 OR E2 OR…OR En, 则 CF(E)=max{CF(E1),CF(E2),…,CF(En)}
结论H的可信度由下式计算: CF(H)=CF(H,E)×max{0,CF(E)}
结论不确定性的合成算法
若由多条不同知识推出了相同的结论,但可信度不同,则用合成算法求出综合可信度。
设有如下知识: IF E1 THEN H (CF(H,E1))
IF E2 THEN H (CF(H,E2))
则结论H的综合可信度分如下两步算出: 首先分别对每一条知识求出CF(H): 然后用下述公式求出E1与E2对H的综合可信度CF12(H):