异常错误示例:weight of size [32, 512, 1], expected input[256, 1024, 1] to have 512 channels, but got 1024

文章讲述了在遇到RuntimeError关于卷积层权重与输入通道数不一致的错误时,如何进行解决。具体错误是期望输入通道为512,但实际得到的是1024。解决方案是调整卷积层的输入通道数,将其改为原来的一半,即2倍的self.num_dimensions。通过修改XX_block中的Conv1d层参数来修复这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RuntimeError: Given groups=1, weight of size [32, 512, 1], expected input[256, 1024, 1] to have 512 channels, but got 1024 channels instead

这个错误提示是因为输入张量的通道数不匹配导致的,卷积层的权重张量与输入张量的通道数应该是一致的。根据错误提示中提供的信息,期望输入张量 input 的通道数是 512,但实际上它的通道数是 1024,所以出现了这个错误。【只需修改conv的输入通道数的维度匹配上输入张量的通道数的维度就可以了

错误发生在下面这一行:

se_tensor = self.XX_block(se_tensor)


        self.XX_block = nn.Sequential(
            nn.AdaptiveAvgPool1d(1),
            nn.Conv1d(self.num_dimensions , self.num_dimensions  // reduction_ratio, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv1d(self.num_dimensions  // reduction_ratio, self.num_dimensions , kernel_size=1),
            nn.Sigmoid()
        )

这个错误很简单,直接将卷积的输入通道数改为原来的2倍就可以了:

        # Squeeze-and-Excitation block
        self.XX_block = nn.Sequential(
            nn.AdaptiveAvgPool1d(1),
            nn.Conv1d(self.num_dimensions*2 , self.num_dimensions  // reduction_ratio, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv1d(self.num_dimensions  // reduction_ratio, self.num_dimensions *2, kernel_size=1),
            nn.Sigmoid()
        )

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值