双延迟深度确定性策略梯度TD3算法思路和两个python实现

本文详细介绍了TD3算法的思路,包括twin critic网络、target policy smoothing regularization和TTUR策略。通过对比DDPG,阐述了TD3如何解决Q值高估问题,并提供了两个Python实现:ElegantRL TD3和spinningup TD3。实验结果显示,两者在性能上有微小差别,适应不同的训练场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法思路

TD3是解决AC框架下Q值高估问题的,这个问题可追溯到double Q-learning中:
y = r + γ Q θ 1 ( s ′ , arg ⁡

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iπ弟弟

如果可以的话,请杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值