[Leetcode] 每日两题 152 459 -day68

博客探讨了LeetCode的两道算法题,分别是152题的乘积最大子数组和459题的重复子字符串。对于152题,通过动态规划解决,考虑了正负数和0的影响;459题,建议从字符长度的因子入手,逐因子判断来简化问题。
摘要由CSDN通过智能技术生成
152. 乘积最大子数组

在这里插入图片描述

动态规划

判断连续子数组的最大值, 由于数组都是整数, 无非就三种情况

·乘于一个正数,最大值保持或者变大,最小值保持或者变小

·乘于一个负数,最大值变最小值,最小值变成最大值

·乘于0 ,全部归0

所以通过引入最大值和最小值, 问题就很简单了

nowmax,nowmin = max(nowmax*num,nowmin*num,num),min(nowmax*num,nowmin*num,num)
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        res = -999
        nowmax,nowmin = 1,1
        for num in nums:
            nowmax,nowmin = max(nowmax*num,nowmin*num,num),min(nowmax*num,nowmin*num,num)
            res = max(nowmax,res)
        return res
459. 重复的子字符串

在这里插入图片描述

这个题应该有很多种方法 比如KMP什么的

但是目的是判断是否为重复子字符串,所以可以从字符长度的因子入手, 首先得是它的因子长度才可以被多次重复, 然后就求一下因子,接着按照因子的长度 逐一判断, 每次累加因子长度,然后判断字符是否相等。这样这个题看起来就会简单明了一些。

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:
        lis =[]
        n = len(s)
        for a in range (1,n):
            if n%a ==0:
                lis.append(a)
        for i in lis:
            for j in range(i,len(s),i):
                if s[0:i] != s[j:j+i]:
                    break
                if j+i == len(s):
                    return True
        return False
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值