工具 | 蓝耘元生代智算云详细使用教程

在这里插入图片描述
在这里插入图片描述

蓝耘 | 蓝耘元生代智算云详细使用教程,蓝耘云,蓝耘元生代智算云是一个面向企业及个人用户,兼具效率与成本优势的智算云。支持裸金属调度和容器调度。裸金属调度能赋予用户更广阔的自定义空间;容器调度则依托方便快捷的调度能力,可帮助纳管合作伙伴闲置的算力资源,并实现快速构建,分钟级打造出一个专属品牌的算力平台,客户仅需提供企业品牌 logo、网址以及负责人信息即可轻松完成。

一、前言

    在数字浪潮汹涌澎湃的时代,程序开发宛如一座神秘而宏伟的魔法城堡,矗立在科技的浩瀚星空中。代码的字符,似那闪烁的星辰,按照特定的轨迹与节奏,组合、交织、碰撞,即将开启一场奇妙且充满无限可能的创造之旅。当空白的文档界面如同深邃的宇宙等待探索,程序员们则化身无畏的星辰开拓者,指尖在键盘上轻舞,准备用智慧与逻辑编织出足以改变世界运行规则的程序画卷,在 0 和 1 的二进制世界里,镌刻下属于人类创新与突破的不朽印记。

    主要应用于 AI 训练、推理、视觉特效和渲染及教科研等计算密集型场景,为用户提供按需付费、随时随地可获取的 GPU 算力云服务,在满足客户业务应用和 GPU 算力随需扩展的双重需求的同时,响应用户在管理成本、技术投入及效率方面的成本控制诉求,全面提升整体计算效率,加速 AI 创新成果转化。

二、蓝耘元生代智算云介绍

2.1 功能模块

  • 智算算力调度模块

    支持裸金属调度和容器调度。裸金属调度能赋予用户更广阔的自定义空间;容器调度则依托方便快捷的调度能力,可帮助纳管合作伙伴闲置的算力资源,并实现快速构建,分钟级打造出一个专属品牌的算力平台,客户仅需提供企业品牌 logo、网址以及负责人信息即可轻松完成。

  • 应用市场模块

    部署了很多镜像,如 sdcomfyuisdwebuiyolo2d 3d 建模的 triposr 等,用户可以点击部署镜像,选择计费方式后立即购买,部署成功后,通过 ssh 命令和密码即可启动应用进入相应操作界面。

  • AI 协作开发模块

    深度契合 AI 开发中的团队协作场景需求,通过前台、中台和后台的全方位协同满足开发训练需求。前台为开发工程师集成了常用的开发套件、存储调用、镜像仓库及高灵活度的资源调度,并通过计算网络轨道调优、numa 亲和性调度、分布式缓存等一系列后台优化进一步提升训练效率,支持自定义任务在同一组 leaf 交换机上运行。中台面向用户运维团队提供集群基础设施级监控指标,助力高端玩家高效追踪训练任务各阶段、各项目的资源使用情况,优化资源分配,确保了算力的充分利用,有效避免资源的浪费与闲置。后台主要为非技术人员提供运营和财务等相关的功能。

2.2 服务模式

  • 公有云服务:

    面向中小型商业客户和各类 C 端 AIGC 开发者,以公有云形式提供弹性算力服务,用户按需购买或订阅资源,无需自建硬件。

  • 私有化部署:

针对数据安全和性能要求较高的大型企业用户,可在其内部进行私有化部署,以完善高效的算力解决方案,为数据隐私和自主运营保驾护航。

  • 按年度订阅:

    对于算力资源丰富但技术能力相对薄弱的云服务商、地方政府智算中心,在授权许可下,向其开放使用权限,并按年收取技术服务费。

2.3 技术优势

  • 全场景覆盖:

    基于 Kubernetes 原生云设计,依托行业领先的灵活基础设施和大规模 GPU 算力资源,实现从数据准备、代码开发、模型训练到推理部署等全场景覆盖,高效赋能用户 AI 研发全流程。

  • 高效集约:

    可实现计算资源统一分配调度、训练数据集中管理并加速、集群环境快速部署与迁移,满足客户在 AI 模型构建、训练和推理业务全流程中对 GPU 算力灵活性及多样化的需求,助力 AI 创新发展提质增速。

  • 开放兼容:

    打造集应用市场、预训练大模型、数据集管理、AI 开发工具、模型镜像等功能于一体的生态体系,致力于构建一个充满活力的 AI 社区,为 AI 应用和镜像制作者开辟多元化的变现途径。

三、智算云注册使用

  • 1.登录后,点击页面顶部导航栏中的 “控制台” 按钮,进入 “容器实例” 页面,选择 “租用新实例”。
  • 2.根据自身需求和预算,从实例列表中选择合适的服务器配置,页面右侧会显示每种配置的详细价格信息。
  • 3.在结算时,可以使用之前领取的代金券来抵扣费用。新用户通常有一定时长的免费使用优惠,如 3090 显卡服务器可免费使用 66 小时,4090 显卡服务器可免费使用 43 小时。

3.1 注册申请

实例购买操作: 根据下图步骤配置使用

注册使用

在这里插入图片描述

3.2 租用新实例

租用新实例

在这里插入图片描述

框架/框架版本/Python版本/Cuda版本 选择:Pytorch

在这里插入图片描述

    PyTorch 是由 Facebook 的人工智能研究团队(FAIR)开发的。它于 2017 年发布,从一开始就受到了广泛关注。其开发的初衷是为了提供一个动态计算图的深度学习框架,使得研究人员和开发者能够更灵活地构建和训练神经网络。

框架/框架版本/Python版本/Cuda版本 选择:Ubuntu

在这里插入图片描述

实例购买完成

在这里插入图片描述

四、服务器使用

4.1 连接服务器

  • 开启无卡模式:

    登录服务器后,进入 “无卡模式” 设置界面并开启该模式。在无卡模式下,每小时仅需 0.1 元,可将数据集从本地传输到服务器。

  • 使用 FileZilla 进行服务器连接:

    1.打开 FileZilla 并点击顶部的 “文件”。

    2.选择 “站点管理器” 并新建站点,选择协议为 “SFTP - SSH File Transfer Protocol”。

    3.输入服务器信息,包括主机(link.lanyun.net)、端口(通常为 13272)、用户(root)和密码,然后选择连接。

4.2 配置开发环境

    1.在本地安装 PyCharm 专业版。

    2.打开工程项目,然后进入 “settings→project interpreter→add”

    3.点击 “SSH interpreter”,设置一个新的服务器配置,包括服务器地址、端口号、用户名和密码等信息。

    4.添加 Python 解释器,通常远程 Python 解释器的路径为 /root/miniconda3/bin/python,如果使用了虚拟环境,则路径为 /root/miniconda3/envs/{环境名}/bin/python

    5.对文件位置进行设置,确保 “Deployment path”“Sync folders” 中的路径保持一致。

4.3 使用应用市场

    1.点击 “应用市场”,其中部署了很多镜像,如 sdcomfyui、sdwebui、yolo、2d 转 3d 建模的 triposr 等。

    2.点击部署镜像,选择计费方式,立即购买,之后会跳转到工作台,等待部署成功。

    3.部署成功后,使用 win+r 键打开命令行,复制粘贴 ssh 命令,并复制 ssh 密码输入,即可启动应用进入相应的操作界面。

4.4 数据管理

    1.上传的数据通常存储在服务器的 /root/lanyun-tmp/ 目录中,可将本地数据上传至此位置。

    2.在服务器上可对数据进行整理、预处理等操作,以满足模型训练和推理的需求。

4.5 模型训练与推理

    1.在应用市场中选择适合的深度学习模型镜像并部署。

    2.根据模型的要求,准备好训练数据和相关配置文件,并上传至服务器。

    3.在相应的操作界面中,设置训练参数,如学习率、批次大小、训练轮数等,然后启动训练任务。

    4.训练完成后,可使用训练好的模型进行推理,输入相应的测试数据,获取模型的输出结果。

4.6 监控与管理

    1.在平台的控制台中,可以查看服务器的运行状态,包括 CPU、GPU 使用率、内存使用情况等。

    2.对于正在运行的任务,可查看任务的进度、日志等信息,及时了解任务的运行情况。

    3。根据实际需求,可对服务器进行重启、停止、删除等操作。

4.7 Linux命令操作

操作步骤: 控制台 》容器实例 》快捷工具 》JupyterLab

使用工具

在这里插入图片描述

linux命令操作终端

在这里插入图片描述

uname:获取系统信息

在这里插入图片描述

实时查看系统的进程信息,包括 CPU 使用率、内存使用率、进程状态等。

在这里插入图片描述

查看磁盘的使用情况,包括磁盘容量、已用空间、可用空间

在这里插入图片描述

今天就介绍到这里了,更多功能快去常识吧……

结束语

        亲爱的朋友,无论前路如何漫长与崎岖,都请怀揣梦想的火种,因为在生活的广袤星空中,总有一颗属于你的璀璨星辰在熠熠生辉,静候你抵达。

         愿你在这纷繁世间,能时常收获微小而确定的幸福,如春日微风轻拂面庞,所有的疲惫与烦恼都能被温柔以待,内心永远充盈着安宁与慰藉。

        至此,文章已至尾声,而您的故事仍在续写,不知您对文中所叙有何独特见解?期待您在心中与我对话,开启思想的新交流。


     🚍 蓝耘元生代智算云平台:https://cloud.lanyun.net//#/registerPage?promoterCode=0131


--------------- 业精于勤,荒于嬉 ---------------
 

请添加图片描述

--------------- 行成于思,毁于随 ---------------

在这里插入图片描述


     ① 🉑提供云服务部署(有自己的阿里云);
     ② 🉑提供前端、后端、应用程序、H5、小程序、公众号等相关业务;
     如🈶合作请联系我,期待您的联系。


     亲,码字不易,动动小手,欢迎 点赞 ➕ 收藏,如 🈶 问题请留言(评论),博主看见后一定及时给您答复,💌💌💌


- - - E N D - - -

### 如何在蓝耘元智算云平台一键部署 DeepSeek AI 模型 #### 访问官方网站并注册登录 为了启动DeepSeek模型的部署流程,需先访问智算平台的官方网站。完成账号的注册与登录过程后,进入用户控制面板。 #### 创建工作空间 点击页面上的“创建工作空间”按钮来初始化一个新的工作环境。这一步骤对于组织后续的操作至关重要[^1]。 #### 选择应用和服务配置 从提供的选项列表中挑选适合的应用模板——这里应选择支持DeepSeek R1模型的服务项。接着指定所需的硬件资源规格,包括但不限于CPU/GPU数量、内存大小等参数设置。同时确认所选服务对应的计费模式满足预算需求。 #### 授权并创建实例 阅读并同意相关协议条款之后提交申请表单以发起实例构建请求。系统会自动处理此请求直至实例准备就绪为止;此时可以在界面上看到状态提示由“正在创建”转变为“运行中”。 #### 连接至已激活的实例 一旦实例成功建立起来以后就可以利用SSH客户端或者其他远程桌面软件按照指引连接上去进一步开展实验活动了。如果一切正常的话应该可以顺利加载预训练好的DeepSeek R1版本供即时测试调用[^2]。 ```bash ssh username@instance_ip_address ``` #### 使用命令行接口执行预测任务 通过上述方法登陆服务器端口后即可运用CLI工具向目标API发送POST请求从而实现对输入数据样本进行分类识别等功能: ```python import requests url = "http://localhost:8080/predict" data = {"text": "your input text here"} response = requests.post(url, json=data) print(response.json()) ```
评论 213
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xcLeigh

万水千山总是情,打赏两块行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值