一、图的基本概念

1、无向图和有向图

\qquad 定义1. 设 V V V为有穷集合,令 P 2 ( V ) = { { u , v } ∣ u , v ∈ V } P_2(V)=\{\{u,v\}|u,v \in V \} P2(V)={{u,v}u,vV}表示 V V V中任意两个元素的二元组集合,令 E ⊆ P 2 ( V ) E\subseteq P_2(V) EP2(V)表示 P 2 ( V ) P_2(V) P2(V)中的任意子集,则称二元组( V , E V, E V,E)为无向图。
\qquad 记作 G = ( V , E ) G=(V, E) G=(V,E),其中 V V V表示定点集合, E E E表示边集合。 ∀ { u , v } ∈ E \forall \{u,v\} \in E {u,v}E,称 u u u v v v邻接,边 { u , v } \{u,v\} {u,v}和顶点 u u u和顶点 v v v相关联。
\qquad 两个图 G = ( V , E ) G=(V,E) G=(V,E) H = ( U , F ) H=(U,F) H=(U,F)是相等的,当且仅当满足 V = U , E = F V=U, E=F V=U,E=F
\qquad ∀ G = ( V , E ) , ∣ V ∣ = p , ∣ E ∣ = q \forall G=(V,E), |V| = p, |E| = q G=(V,E)V=p,E=q,则称 G G G ( p , q ) (p,q) (p,q)图。 特殊地,称 ( 1 , 0 ) (1,0) (1,0)为平凡图, ( p , 0 ) (p,0) (p,0)为零图。
\qquad 定义2. 设 V V V为有穷集合,令 A ⊆ V × V \ { ( v , v ) ∣ v ∈ V } A \subseteq V×V \backslash \{ (v,v)|v\in V\} AV×V\{(v,v)vV}表示有向边集合,则称 ( V , A ) (V, A) (V,A)为有向图,记作 D = ( V , A ) D=(V,A) D=(V,A)
\qquad 需要注意,有向图和无向图中, E E E A A A均是反自反的。

2、图的表示

2.1 图解表示

\qquad 给定顶点集合和边集合之后,可以直观地将图进行可视化绘制,这种表示方法称为图解表示法。

2.2 图的邻接矩阵表示

\qquad 将图的所有顶点分别构成一个二维矩阵的行列,将顶点之间的边关系表示在构成的矩阵之中,则称这个二维矩阵为图的邻接矩阵。

2.2 图的邻接表表示

\qquad 上述使用图的邻接矩阵表示图的时候,当图时一个稀疏图时(图中的边数量较少),在图的存储时会浪费大量的存储空间,所以需要将图进行压缩存储。一种简单的方式就是利用图的邻接表来存储图。邻接表中表的头结点表示图中每一个顶点,邻接表中的每一个节点中有值域和指针域,值域存储图中节点的编号,指针域存储一个指针,指向和当前结点相邻接的其他结点。

3、子图

\qquad 给定一个图 G = ( V , E ) G=(V, E) G=(V,E),称 G 1 = ( V 1 , E 1 ) G_1=(V_1, E_1) G1=(V1,E1)为图 G G G的子图,当且仅当 V 1 ∈ V V_1\in V V1V并且 E 1 ∈ E E_1\in E E1E
\qquad G G G的生成子图指的是包含 G G G的所有顶点的子图 G ′ G' G的,但是 G ′ G' G中不包含 G G G中所有的边。

4、度

\qquad G = ( V , E ) G=(V, E) G=(V,E),对于 ∀ v ∈ V \forall v \in V vV,与 v v v相关联的边的条数称为顶点 v v v的度,记作 d e g   v deg\ v deg v

  • 定理 1. (握手定理) 给定一个图 G = ( V , E ) G=(V, E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图,则有 ∑ v ∈ V d e g   v = 2 ∗ q \sum_{v \in V}deg \ v = 2*q vVdeg v=2q,即 G G G中顶点的度数是边点数量的两倍。
  • 推论 1. 握过奇数次手的人有偶数个。
    \qquad 推论 1. 简单说明,因为有 定理 1. 成立,所以图中所有顶点的度数总和为偶数;将图中的顶点按照度数多少分为奇数点和偶数点,因为偶数乘以任何数都为偶数,说以奇数点的个数必定为偶数个。
    \qquad 记图 G G G的最小度数节点为 δ ( G ) = m i n v ∈ V { d e g   v } \delta(G) = min_{v \in V}\{deg \ v\} δ(G)=minvV{deg v},记图 G G G的最大度数节点为 Δ ( G ) = m a x v ∈ V { d e g   v } \Delta(G) = max_{v \in V}\{deg \ v\} Δ(G)=maxvV{deg v}

5、正则图

\qquad 给定一个 ( p , q ) (p, q) (p,q) G = ( V , E ) G=(V, E) G=(V,E),如果 ∀ v ∈ V \forall v \in V vV,均满足 d e g   v = r deg \ v = r deg v=r,则称 G G G r r r-正则图。若 G G G中所有顶点的度数均为 p − 1 p-1 p1,则称 G G G为完全图,即 p − 1 p-1 p1-正则图即为完全图,记为 K p K_p Kp

6、同构

\qquad G = ( V , E ) G=(V, E) G=(V,E) H = ( U , F ) H=(U, F) H=(U,F),令 ∣ V ∣ = ∣ U ∣ |V|=|U| V=U;如果 ∃ ϕ : V → U \exist \phi: V →U ϕ:VU ϕ \phi ϕ是一个双射,满足 ( v 1 , v 2 ) ∈ E ⇆ ϕ ( v 1 ) ϕ ( v 2 ) ∈ F (v_1, v_2) \in E \leftrightarrows \phi(v_1)\phi(v_2) \in F (v1,v2)Eϕ(v1)ϕ(v2)F,则称 G G G H H H是同构的,记作 G ≅ H G \cong H GH

7、路,圈和连通图

\qquad 通道: G = ( V , E ) G=(V, E) G=(V,E) G G G的顶点和边的交错序列 v 0 , x 0 , v 1 , x 1 , . . . , x n , v n v_0, x_0, v_1, x_1, ..., x_n, v_n v0,x0,v1,x1,...,xn,vn 称为 G G G的一条通道,通道的程度为通道中边的数量,若 v 0 = v n v_0 = v_n v0=vn,则称这个通道为闭通道。
\qquad 迹: G G G 的一条(闭)通道如果没有重复的边,则称其为一条(闭)迹。
\qquad 路: G G G 的没有重复顶点的(闭)通道,称为(闭)路,闭路也称为圈。
\qquad 连通图: G = ( V , E ) , ∀ u , v ∈ V G=(V, E),\forall u,v \in V G=(V,E)u,vV,如果 u u u v v v之间有路,则称图 G G G连通。

7.1 连通图的判定条件

\qquad (充分条件) 定理 1. G = ( V , E ) G=(V, E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图, ∀ u , v ∈ V \forall u,v \in V u,vV, 如果 ( u , v ) ∉ E (u,v) \notin E (u,v)/E,且 d e g   u + d e g   v ≥ p − 1 deg \ u + deg \ v \geq p-1 deg u+deg vp1,则称 G G G是连通的。
\qquad 图的极大连通子图:在一个非联通图中,任意一个连通的子图称为极大连通子图。之所以称为“极大”是因为连通子图中任意再多加一个点,则子图就变得不连通。
\qquad 推论. G = ( V , E ) G=(V, E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图,若 ∀ v ∈ V \forall v \in V vV d e g   v ≥ ⌈ p 2 ⌉ deg\ v \geq \lceil \frac{p}{2} \rceil deg v2p,则 G G G是连通的。

7.2 圈的判定条件

\qquad G = ( V , E ) G=(V, E) G=(V,E)图, ∀ v ∈ V \forall v \in V vV, 如果 G G G v v v顶点的度为偶数,则 G G G中必定有圈存在。同时有:若 δ ( G ) ≥ m ≥ 2 \delta(G) \geq m \geq 2 δ(G)m2, 则有长度至少为 m + 1 m+1 m+1的圈存在。(可以使用最长路方法进行证明)。
\qquad G = ( V , E ) G=(V, E) G=(V,E)图,若 ∀ u , v ∈ V \forall u,v \in V u,vV之间有两条不同的路,则 G G G中有圈存在。

8、补图和双图

8.1 补图

\qquad 定义:设 G = ( V , E ) G=(V, E) G=(V,E), 则 G G G的补图 G c = ( V , E c ) G^c = (V, E^c) Gc=(V,Ec),其中 E c = P 2 ( V ) /   E E^c = P_2(V) /\ E Ec=P2(V)/ E。若 G G G H H H同构,则 G c G^c Gc H c H^c Hc也同构,若 G G G G c G^c Gc同构,则称, G G G为自同构。
\qquad 利用补图的定义,可以方便地证明在6个顶点的图 G G G中,或者图 G G G中有三角形存在,或者 G c G^c Gc中有三角形存在。

8.2 双图

\qquad 定义:设 G = ( V , E ) G=(V, E) G=(V,E),若存在一个 V V V的二划分 { V 1 , V 2 } \{V_1, V_2 \} {V1,V2},使得 ∀ u v ∈ E , u ∈ V 1 , v ∈ V 2 \forall uv \in E, u \in V_1, v \in V_2 uvE,uV1,vV2或者 u ∈ V 2 , v ∈ V 1 u \in V_2, v \in V_1 uV2,vV1,则称 G G G为双图。
\qquad 定理 1. 设 G = ( V , E ) G=(V, E) G=(V,E)是一个无向图,则 G G G是双图的充分必要条件为: G G G中圈的长度为偶数。
\qquad 图兰定理. (在没有三角形的图中,完全双图的边数最多). 设 G = ( V , E ) G=(V, E) G=(V,E) ( p , q ) (p,q) (p,q)图,如果 G G G中没有三角形,则 q ≤ ⌈ p 2 4 ⌉ q \leq \lceil \frac{p^2}{4} \rceil q4p2

9、欧拉图

\qquad 定义图 G = ( V , E ) G=(V,E) G=(V,E),包含 G G G中所有顶点和所有边的(闭)迹称为欧拉(闭)迹
\qquad 包含欧拉(闭)迹的图称为欧拉图
\qquad 欧拉定理 G G G是欧拉图,当且仅当 G G G是连通的,且 G G G中每一个顶点的度为偶数。
\qquad 定理2:图 G G G中有一条欧拉开迹,当且仅当 G G G中恰好有两个奇度顶点。
\qquad 定理3:假设 G G G中有2 n n n个奇度顶点,则 G G G中至少有 n n n条迹。

10、哈密顿图

\qquad 对于一个无向图 G = ( V , E ) G=(V,E) G=(V,E),如果 G G G中有生成圈(每一个节点只走一次的环路),则称 G G G为哈密顿图。
\qquad 可以使用染色法来判别一个图 G G G是否为哈密顿图,染色法是指在一个图中用两种不同的颜色进行染色,同一个边的两端的节点需要染成不同的颜色,图中所有节点均需要进行染色。若某个图 G G G可以进行染色,满足每一条边的两个端点均为不同的颜色,同时满足不同颜色的节点数量不同,则这个图 G G G一定不是哈密顿图。
\qquad 哈密顿图判定的必要条件:给定一个图 G = ( V , E ) G=(V,E) G=(V,E), 令 S ⊆ V S \subseteq V SV,令 ∣ G − S ∣ |G-S| GS表示从 G G G中去除 S S S之后图中剩余的枝的数量, ∣ S ∣ |S| S表示集合 S S S中的节点数量, 当且仅当 ∣ G − S ∣ ≤ ∣ S ∣ |G-S| \leq |S| GSS,则 G G G为一个哈密顿图。

10.1 哈密顿图判定的充分条件

\qquad 定理1(Dirac定理). 给定一个图 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图, ∣ V ∣ = p > 3 |V|=p>3 V=p>3,如果 ∀ v ∈ V \forall v \in V vV d e g ( v ) ≥ p / 2 deg(v) \geq p/2 deg(v)p/2, 则 G G G为哈密顿图。
\qquad 定理2(Ore定理). 给定一个图 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图, ∀ u , v ∈ V , ( u , v ) ∉ E \forall u,v \in V, (u,v) \notin E u,vV,(u,v)/E,若 d e g ( u ) + d e g ( v ) ≥ p deg(u)+deg(v) \geq p deg(u)+deg(v)p,则 G G G为哈密顿图。
\qquad 定理3. 给定一个图 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图, ∀ u , v ∈ V , ( u , v ) ∉ E \forall u,v \in V, (u,v) \notin E u,vV,(u,v)/E,若 d e g ( u ) + d e g ( v ) ≥ p − 1 deg(u)+deg(v) \geq p-1 deg(u)+deg(v)p1,则 G G G中有一个哈密顿路。

THE END

  • 26
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
UML活动是一种描述系统行为的形化工具,它主要用于描述业务流程、工作流程和操作流程等。活动由一系列活动和控制流程组成,其中活动表示系统中的操作或任务,控制流程表示这些操作或任务之间的关系。活动基本概念和组成如下: 1. 活动(Activity):表示系统中的操作或任务,通常用矩形框表示,框内写明活动的名称。 2. 控制流(Control Flow):表示活动之间的关系,通常用箭头表示,箭头从一个活动指向另一个活动,表示执行顺序。 3. 分支(Decision):表示在某个活动执行过程中,根据某个条件的不同,可能会有不同的执行路径。通常用菱形表示,菱形内写明条件。 4. 合并(Merge):表示在某个活动执行过程中,不同的执行路径会汇聚到同一个活动中。通常用菱形表示。 5. 开始(Initial):表示活动的开始,通常用一个实心圆表示。 6. 结束(Final):表示活动的结束,通常用一个实心圆表示。 7. 泳道(Partition):将活动中的活动划分为若干组,并把每一组指定给负责这组活动的业务组织,即对象。在活动中,泳道区分了负责活动的对象,它明确地表示了哪些活动是由哪些对象进行的。 下面是一个简单的活动示例,用于描述一个简单的购物流程: ```uml @startuml |客户| start :选择商品; if (库存是否充足?) then (yes) :下单; else (no) :等待补货; endif |商家| :发货; |物流公司| :派送; |客户| :签收; stop @enduml ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dragon Fly

多谢老板赏钱[抱拳抱拳抱拳]

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值