pandas+sklearn数据预处理

本文探讨了数据预处理的重要性,包括无量纲化、处理缺失值、信息利用率提升等。介绍了pandas库中处理缺失值、填充数据、删除重复值的方法,并详细阐述了sklearn中的标准化、归一化、正则化、二值化、类别编码等预处理技术,以及缺失值处理的单变量和多变量插补策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.未经与处理的数据可能存在的问题

  • 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
  • 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。
  • 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用独热编码的方式将定性特征转换为定量特征:假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。独热编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用独热编码后的特征可达到非线性的效果。
  • 存在缺失值:缺失值需要补充。
  • 信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征独热编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。
  • 特征缺失:某些因素在原始数据中并不存在。

2.无量纲化
无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化、归一法和区间缩放法。
(1)标准化
标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。
(2)区间放缩法
常用的方法是通过对原始数据进行线性变换把数据映射到[0,1]之间。在数据流场景下最大值与最小值是变化的。另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景
(3)归一化
归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“单位向量”。此方法主要用于:(1)需要使用二次方程,比如点积或者其他核方法计算样本对之间的相似性(2)常用于文本分类和内容聚类的向量空间模型的基础。

3.pandas数据预处理
(1)缺失值的定义:
数据原本存在但是没被收集/数据根本不存在。
默认缺失值用NaN来表示,也可以通过设置用inf/-inf来表示:

pandas.options.mode.use_inf_as_na = True

时间序列中的缺失值用NaT来表示,pandas中NaN和NaT是兼容的。
(2)判断缺失值

df=pd.DataFrame(np.random.randn(5,3),index=['a','c','d','e','f'],columns=['one', 'two', 'three'])
df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df2)
print(df2.isna())#输出的是布尔型变量
print(df2.notna())
print(df.isnull().sum())#输出每一列缺失值的个数
print(df.isnull().count())#输出每一列值的个数

(3)缺失值赋值
给缺失值赋值可以通过np.nan或None进行。当被赋值的是数值型的容器,缺失值的形式为nan,当被赋值的是对象型的容器,缺失值的形式保留为原始输入的形式(None or nan)
(4)缺失值计算
下面是含有缺失值数据的一些计算规则。
求和时缺失数据会被默认是0;
求累加或累乘时被自动忽略,也可以通过设置skipna=False让它不被忽略,从而整个结果都成为nan;
完全为空的dataframe求和为0,乘积为1;
dataframe分组中缺失数据会被自动忽略。
(5)过滤缺失值

df=pd.DataFrame([[1,6.5,3],[1,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,6.5,3]])
print(df)
print(df.dropna())#默认只要包含nan就把那一行删去
print(df.dropna(how='all'))#整行都是nan才删去
print(df.dropna(axis=1))#把包含nan的列删去(所以最后输出了一个空的dataframe,全部被删掉了)
>>>
      0    1    2
0  1.0  6.5  3.0
1  
### 使用 `sklearn` 进行数据预处理标准化 在机器学习项目中,数据预处理是非常重要的一步。对于数值型特征而言,标准化可以使得不同量纲的数据具有可比性,并加速模型收敛速度[^1]。 #### 定义函数实现标准化过程 下面定义了一个名为 `stander_demo()` 的 Python 函数来展示如何利用 `StandardScaler` 类完成这一任务: ```python import pandas as pd from sklearn.preprocessing import StandardScaler def stander_demo(): '''执行标准化操作''' # 加载数据集 data = pd.read_csv('./database/dating.txt', sep='\t') # 创建并配置 StandardScaler 对象 transfer = StandardScaler() # 应用 fit_transform 方法对选定列实施标准化变换 transformed_data = transfer.fit_transform( data[['milage', 'Liters', 'Consumtime']]) print('标准化处理后的结果:\n', transformed_data) print('每列属性计算得到的均值为:\n', transfer.mean_) print('各列对应的方差估计值为:\n', transfer.scale_ ** 2) if __name__ == '__main__': stander_demo() ``` 此代码片段展示了如何读入指定路径下的 CSV 文件作为原始数据源;接着创建了 `StandardScaler` 实例用于后续的操作;最后通过调用其成员方法 `.fit_transform()` 来一次性完成参数拟合与实际转换两步工作,并打印输出经过标准化之后的新数组以及所使用的统计指标——即样本均值和标准偏差[^3]。 值得注意的是,在这里仅选择了部分特定字段来进行标准化处理 (`'milage'`, `'Liters'`, 和 `'Consumtime'`) ,而未涉及整个 DataFrame 中其他可能存在的非数值或不需要被调整尺度的信息项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值