机器学习入门笔记2-XGBoost

本文介绍了XGBoost的基本概念、优势与局限,详细讲解了其工作原理,包括泰勒展开的目标函数、CART树的构建优化及并行策略。通过实例展示了数据预处理、特征选择、模型训练与预测的过程。此外,探讨了特征重要性的评估方法,并进行了参数优化,如学习率、子采样和最大深度等,以提高模型性能。
摘要由CSDN通过智能技术生成

XGBoost介绍

XGBoost是一个可供用户轻松解决分类、回归或排序问题的软件包。它内部实现了阶度提升树(GBDT)模型。

  • 优点:简单易用,在处理大规模数据集时速度快效果好,相对于深度学习模型不需要精细调参便能取得相近的效果。
  • 缺点:相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。且在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度遥遥领先XGBoost。

XGBoost原理粗略讲解

XGBoost底层实现了GBDT算法,并对GBDT算法做了一系列优化:

  1. 对目标函数进行了泰勒展示的二阶展开,可以更加高效拟合误差。
  2. 提出了一种估计分裂点的算法加速CART树的构建过程,同时可以处理稀疏数据。
  3. 提出了一种树的并行策略加速迭代。
  4. 为模型的分布式算法进行了底层优化。

XGBoost是基于CART树的集成模型,它的思想是串联多个决策树模型共同进行决策。

在这里插入图片描述

那么如何串联呢?XGBoost采用迭代预测误差的方法串联。举个通俗的例子,我们现在需要预测一辆车价值3000元。我们构建决策树1训练后预测为2600元,我们发现有400元的误差,那么决策树2的训练目标为400元,但决策树2的预测结果为350元,还存在50元的误差就交给第三棵树……以此类推,每一颗树用来估计之前所有树的误差,最后所有树预测结果的求和就是最终预测结果!

XGBoost的基模型是CART回归树,它有两个特点:(1)CART树,是一颗二叉树。(2)回归树,最后拟合结果是连续值。

XGBoost模型可以表示为以下形式,我们约定 f t ( x ) f_t(x) ft(x)表示前 t t t颗树的和, h t ( x ) h_t(x) ht(x)表示第 t t t颗决策树,模型定义如下:

f t ( x ) = ∑ t = 1 T h t ( x ) f_{t}(x)=\sum_{t=1}^{T} h_{t}(x) ft(x)=t=1Tht(x)

由于模型递归生成,第 t t t步的模型由第 t − 1 t-1 t1步的模型形成,可以写成:

f t ( x ) = f t − 1 ( x ) + h t ( x ) f_{t}(x)=f_{t-1}(x)+h_{t}(x) ft(x)=ft1(x)+ht(x)

每次需要加上的树 h t ( x ) h_t(x) ht(x)是之前树求和的误差:

r t , i = y i − f m − 1 ( x i ) r_{t, i}=y_{i}-f_{m-1}\left(x_{i}\right) rt,i=yifm1(xi)

我们每一步只要拟合一颗输出为 r t , i r_{t,i} rt,i的CART树加到 f t − 1 ( x ) f_{t-1}(x) ft1(x)就可以了。

算法实战

目标:使用历史降雨数据来预测明天会下雨的概率。
数据的特征如下所示:
在这里插入图片描述

1. 准备数据

  1. 库函数导入
# 基础函数库
import numpy as np
import pandas as pd

# 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
  1. 数据载入和查看
    pd.read_csv('数据集文件名'):读取数据并将其转换为DataFrame格式
data = pd.read_csv('train.csv')

数据集查看
.info():查看每列数据的数据类型和个数
.describe():对特征进行一些统计描述

# 利用.info()查看数据的整体信息
data.info()
data.head()
data.tail()
data.info()

# 查看标签的数量
pd.Series(data['RainTomorrow']).value_counts()
  1. 数据预处理
    填补空值
data = data.fillna(-1)
  1. 对离散变量进行编码:一个特征编码成一个值,便于数学上的处理
## 把所有的相同类别的特征编码为同一个值
def get_mapfunction(x):
    mapp = dict( zip( x.unique().tolist(),range(len(x.unique().tolist())) ) )
    def mapfunction(y):
        if y in mapp:
            return mapp[y]
        else:
            return -1
    return mapfunction

# 内嵌函数的使用方法:传入参数.apply(内嵌函数),内嵌函数通常由它的外部函数返回。
for i in category_features:
    data[i] = data[i].apply(get_mapfunction(data[i]))

## 编码后的字符串特征变成了数字
data['Location'].unique()
"""
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
       34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
"""

数据可视化

  1. 散点图:通过观察不同特征组合的散点图,判断哪些特征更具有区分能力。(如何衡量区分能力?)
## 选取三个特征与标签组合的散点可视化
sns.pairplot(data=data[['Rainfall',
'Evaporation',
'Sunshine'] + ['RainTomorrow']], diag_kind='hist', hue= 'RainTomorrow')
plt.show()

在这里插入图片描述

  1. 箱型图:sns.boxplot()做出不同数字特征下的箱型图(数据分布图)。
    首先需要用.dtype()区分数字特征和非数字特征:
# 数字特征
numerical_features = [x for x in data.colomns if data[x].dtype == np.float]
# 非数字特征
category_features = [x for x in data.columns if data[x].dtype != np.float and x != "RainTomorrow"]

# 数据相对于特征分布图
for col in data[numerical_features].columns:
	if col != 'RainTomorrow':
		sns.boxplot(x='RainTomorrow', y=col, saturation=0.5, palette='pastel', data=data)
		plt.title(col)
		plt.show()

在这里插入图片描述
(其余特征的箱型图略)
3. 条形图
对每一个特征进行分类计数:对每一个类别使用value_counts()得到一个Series,将该Series作为元素添加到字典中

# 对每一个类别使用value_counts()得到一个Series,将该Series作为元素添加到字典中
tlog = {}
for i in category_features:
    tlog[i] = data[data['RainTomorrow'] == 'Yes'][i].value_counts()
flog = {}
for i in category_features:
    flog[i] = data[data['RainTomorrow'] == 'No'][i].value_counts()

作图:
x = pd.DataFrame(tlog['Location']).sort_index()['Location']:先取出tlog字典中的’Location’元素并转换成DataFrame,在对其按照’Location’进行排序得到一个series
y = pd.DataFrame(tlog['Location']).sort_index().index:得到序列中的每个索引值

plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.title('RainTomorrow')
# x = pd.DataFrame(tlog['Location']).sort_index()['Location']:先取出tlog字典中的'Location'元素并转换成DataFrame,在对其按照'Location'进行排序得到一个series
# y = pd.DataFrame(tlog['Location']).sort_index().index:得到序列中的每个索引值
sns.barplot(x = pd.DataFrame(tlog['Location']).sort_index()['Location'], y = pd.DataFrame(tlog['Location']).sort_index().index, color = "red")
plt.subplot(1,2,2)
plt.title('Not RainTomorrow')
sns.barplot(x = pd.DataFrame(flog['Location']).sort_index()['Location'], y = pd.DataFrame(flog['Location']).sort_index().index, color = "blue")
plt.show()

在这里插入图片描述
可以发现不同地区的降雨情况差别很大,有的地方明显降雨更多。

2. 模型训练与预测

  1. 模型训练
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
data_target_part = data['RainTomorrow']
data_features_part = data[[x for x in data.columns if x != 'RainTomorrow']]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)

## 导入XGBoost模型
from xgboost.sklearn import XGBClassifier
## 定义 XGBoost模型 
clf = XGBClassifier()
# 在训练集上训练XGBoost模型
clf.fit(x_train, y_train)
  1. 模型预测
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the training set is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the testing set is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述

3. 特征选择:通过特征的重要程度进行选择

模型名.feature_importances_:特征的重要程度

sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)

在这里插入图片描述
我们还可以使用XGBoost中的下列重要属性来评估特征的重要性。

  • weight:是以特征用到的次数来评价
  • gain:当利用特征做划分的时候的评价基尼指数
  • cover:利用一个覆盖样本的指标二阶导数(具体原理不清楚有待探究)平均值来划分。
  • total_gain:总基尼指数
  • total_cover:总覆盖

XGBoost中直接提供参数重要程度的可视化方法plot_importance(模型,importance_type='指数类型')

from sklearn.metrics import accuracy_score
from xgboost import plot_importance

# 参数为模型和特征集
def estimate(model,data):

    #sns.barplot(data.columns,model.feature_importances_)
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="weight")
    ax2.set_title('weight')
    ax3 = plot_importance(model, importance_type="cover")
    ax3.set_title('cover')
    plt.show()

# 参数为训练特征集,训练标签集和测试集
def classes(data,label,test):
    model=XGBClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans
 
ans=classes(x_train,y_train,x_test)
print('acc=',accuracy_score(y_test,ans))

在这里插入图片描述

4. 参数优化

除了使用最优化算法优化weight和bias之外,我们还可以对一些模型的特定参数(术语叫什么来着?)进行优化来提高模型的预测准确度。

XGBoost中包括但不限于下列对模型影响较大的参数:

  • learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。
  • subsample:系统默认为1。这个参数控制对于每棵树,随机采样的比例。减小这个参数的值,算法会更加保守,避免过拟合, 取值范围零到一。
  • colsample_bytree:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
  • max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。

调节模型参数的方法有贪心算法、网格调参、贝叶斯调参等。

这里我们采用网格调参,它的基本思想是穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。
训练模型 = GridSearchCV(模型名, 参数字典, cv=3, scoring='accuracy', verbose=1, n_jobs=-1)

## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

## 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
subsample = [0.8, 0.9]
colsample_bytree = [0.6, 0.8]
max_depth = [3,5,8]

parameters = { 'learning_rate': learning_rate,
              'subsample': subsample,
              'colsample_bytree':colsample_bytree,
              'max_depth': max_depth}
model = XGBClassifier(n_estimators = 50)

## 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=1,n_jobs=-1)
clf = clf.fit(x_train, y_train)

## 网格搜索后的最好参数为
clf.best_params_

是由调参后的模型进行预测,查看优化效果:

## 在训练集和测试集上分布利用最好的模型参数进行预测

## 定义带参数的 XGBoost模型 
clf = XGBClassifier(colsample_bytree = 0.6, learning_rate = 0.3, max_depth= 8, subsample = 0.9)
# 在训练集上训练XGBoost模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the training set is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the testing set is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述
我们可以看到在训练集上的预测精度有了明显提升,在测试集上的预测精度也略有提高。

XGBoost的重要参数:
1.eta[默认0.3]
通过为每一颗树增加权重,提高模型的鲁棒性。
典型值为0.01-0.2。

2.min_child_weight[默认1]
决定最小叶子节点样本权重和。
这个参数可以避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
但是如果这个值过高,则会导致模型拟合不充分。

3.max_depth[默认6]
这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
典型值:3-10

4.max_leaf_nodes
树上最大的节点或叶子的数量。
可以替代max_depth的作用。
这个参数的定义会导致忽略max_depth参数。

5.gamma[默认0]
在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关。

6.max_delta_step[默认0]
这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
但是当各类别的样本十分不平衡时,它对分类问题是很有帮助的。

7.subsample[默认1]
这个参数控制对于每棵树,随机采样的比例。
减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
典型值:0.5-1

8.colsample_bytree[默认1]
用来控制每棵随机采样的列数的占比(每一列是一个特征)。
典型值:0.5-1

9.colsample_bylevel[默认1]
用来控制树的每一级的每一次分裂,对列数的采样的占比。
subsample参数和colsample_bytree参数可以起到相同的作用,一般用不到。

10.lambda[默认1]
权重的L2正则化项。(和Ridge regression类似)。
这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。

11.alpha[默认1]
权重的L1正则化项。(和Lasso regression类似)。
可以应用在很高维度的情况下,使得算法的速度更快。

12.scale_pos_weight[默认1]
在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

资料参考自阿里机器学习训练营

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值