【Stata】实证模型差分后,与原模型如何等价?

本文介绍了如何设定一个涉及时间序列数据的回归模型,包括处理随机误差项的异方差性和自相关性,以及在R语言中通过`reghdf`函数进行估计的实现步骤,如生成虚拟变量、设置面板数据集和进行空间与时间自相关性检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.模型设定

Y i , t = β 0 + β 1 ⋅ X i , t + γ i + γ t + ϵ i , t a                      ( 1 ) Y_{i,t}=\beta_{0} + \beta_{1} \cdot X_{i,t}+\gamma_{i} + \gamma_{t} + \epsilon_{i,t}^{a} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1) Yi,t=β0+β1Xi,t+γi+γt+ϵi,ta                    (1)

Y i , t − 1 = β 0 + β 1 ⋅ X i , t − 1 + γ i + γ t − 1 + ϵ i , t − 1 b             ( 2 ) Y_{i,t-1}=\beta_{0} + \beta_{1} \cdot X_{i,t-1}+\gamma_{i} + \gamma_{t-1} + \epsilon_{i,t-1}^{b} \ \ \ \ \ \ \ \ \ \ \ (2) Yi,t1=β0+β1Xi,t1+γi+γt1+ϵi,t1b           (2)

(1)式 - (2)式:
Y i , t − Y i , t − 1 = ( β 0 − β 0 ) + β 1 ( X i , t − X i , t − 1 ) + ( γ t − γ t − 1 ) + ( ϵ i , t a − ϵ i , t b ) Y_{i,t} - Y_{i,t-1} =(\beta_{0} -\beta_{0})+ \beta_{1}(X_{i,t}-X_{i,t-1})+(\gamma_{t}-\gamma_{t-1}) +(\epsilon_{i,t}^{a}-\epsilon_{i,t}^{b}) Yi,tYi,t1=(β0β0)+β1(Xi,tXi,t1)+(γtγt1)+(ϵi,taϵi,tb)

进而得到:
Δ Y i , t = β 1 ⋅ Δ X i , t + σ t + ϵ i , t \Delta Y_{i,t}=\beta1 \cdot \Delta X_{i,t} + \sigma_{t} + \epsilon_{i,t} ΔYi,t=β1ΔXi,t+σt+ϵi,t

2.实现过程

clear
set obs 1000
egen citycode = repeat() ,v(1000(10)2000)
gen provcode = real(substr(string(citycode),1,2))
sort citycode
egen year = repeat(), v(2005/2015)

gen e = rnormal()
gen cov1 = 2*e + 6
gen cov2 = -e*cov1 + 10
gen x = uniform()* 3  
gen iv = 

gen y = 2*x + cov1 + cov2 + citycode / 1000 +  (year-2004)*5*uniform()   // 系数应当为2


reghdfe y x cov1 cov2 ,a(citycode year) 
reghdfe y x ,a(provcode year) 


xtset citycode year
gen dx = d.x
gen dy = d.y
reghdfe dy dx ,a(citycode) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mengke25

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值