导线水平角及边长观测实习记录

仪器:全站仪,三脚架,棱镜两个
有ABCDE五个点
在B点架设全站仪,打开激光对准点中心,通过上下调整三脚架的三条腿(切勿移动它)来使气泡相对居中,再细调。

工程测量微课堂-电子水准仪的使用



只需设置一下温度和PPM
在这里插入图片描述

照准A点的棱镜,在菜单栏的第二页进行置零
在这里插入图片描述
在菜单栏的第一页有平距按钮。
在这里插入图片描述
上图中H代表AB之间的距离,ZA为天顶距,HAR为角度。
记录H
这里再讲一下什么是盘左盘右,见下图,水平制动在右边时为盘左,在左边时就为盘右。
下面这是盘左
水平制动螺旋在右手边
下面是盘右
与上面相反
顺时针旋转照准C点,平距,记录此时的H和HAR。
此时半个测回已经完成。
将望远镜旋转180度 再将全站仪顺时针旋转180度,上面两个步骤结束后你还是瞄向C点。
再次平距,只记录角度HAR。
再顺时针旋转180度照准A点进行平距,记录角度HAR。
至此一个测回全部完成。
在第二个测绘前需要进行置角操作。
菜单栏第一页
瞄准A点后设置为90度。
下面的操作与第一个测回完全相同。
左盘
平距A,记录H,HAR
平距C,记录H,HAR
较远的目标会有较高的精度

右盘
平距C,记录HAR
平距A,记录HAR
至此B点的两个测回都已完成。
待闭合导线全部测完并记录之后就要内业检核。
在这里插入图片描述
二等精度要求:
半测回值要求 小于40″

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cdio118小老弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值