1.什么是短时傅里叶变换?
在傅里叶变换的基础上,套用窗函数。即
2.示意图:
左图为傅里叶变换,可以观察整个时域上频率分布情况;右图为短时傅里叶变换,将时域进行了分割,可以观察某一时段上的频率分布情况,时间轴每格的长度即为窗函数的window length。
3.时间频率参数选取的关系
如左图,若横轴(时间)共1.2s,纵轴(频率)共50Hz,横轴划分为12格,每格0.1s,纵轴划分为两格,每格25Hz;右图横轴每格0.3s,纵轴每格约8Hz。无论怎样划分,两图中每个方块的面积是相同的,且横轴划分格数越少(如右图,即选取的数据点数多),频率划分越细(如右图,相比左图划分两格,右图纵轴共6格)。
因此可得,时间轴分辨率与频率分辨率成反比。时间轴分辨率低(选取点数少