🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 参考原作者:K同学啊|接辅导、项目定制
🏡 我的环境:
语言环境:Python3.8
深度学习环境:Pytorch
一.前期工作
1.设置GPU
若是使用的是cpu可忽略,不用管
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0]
tf.config.experimental.set_memory_growth(gpu0, True)
tf.config.set_visible_devices([gpu0],"GPU")
2.导入数据集
import matplotlib.pyplot as plt
import pathlib, PIL, warnings
import tensorflow as tf
# 用来设置中文字体,此处为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来显示负号
plt.rcParams['axes.unicode_minus'] = False
# 隐藏警告
warnings.filterwarnings('ignore')
# 导入数据
path = 'E:/TF环境/T8_data'
data_dir = pathlib.Path(path)
# 显示数据
image_count = len(list(data_dir.glob('*/*')))
print('图片总数为',image_count)
二、数据预处理
1、加载数据
使用image_dataset_from_directory方法将我们本地的数据加载到tf.data.Dataset中,并设置训练图片模型参数:划分训练集及验证集
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
label_mode = "categorical",
seed = 123,
image_size = (img_height, img_width),
batch_size = batch_size
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed = 123,
image_size = (img_height, img_width),
batch_size = batch_size
)
# 查看数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
三、构建VGG-16网络
1. VGG优缺点分析
-
VGG优点:
-VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2) -
VGG缺点:
-训练时间过长,调参难度大
-需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中
2. VGG结构说明
- 13个卷积层(Convolutional Layer),分别用 blockXconvX 表示
- 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
- 5个池化层(Pool layer),分别用blockXpool表示
因为VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
3.构建网络
from tensorflow.keras import layers,models,Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
def VGG16(nb_classes, input_shape):
input_tensor = Input(shape=input_shape)
x = Conv2D(64,(3,3),activation='relu',padding='same',name='block1_conv1')(input_tensor)
x = Conv2D(64,(3,3),activation='relu',padding='same',name='block1_conv2')(x)
x = MaxPooling2D((2,2),strides=(2,2),name='block1_pool')(x)
x = Conv2D(128,(3,3),activation='relu',padding='same',name='block2_conv1')(x)
x = Conv2D(128,(3,3),activation='relu',padding='same',name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
x = Flatten()(x)
x = Dense(4096,activation='relu',name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_tensor = Dense(nb_classes,activation='softmax',name='predictions')(x)
model = Model(input_tensor,output_tensor)
return model
model = VGG16(1000,(img_width,img_height,3))
model.summary()
四、编译
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
- 13个卷积层(Convolutional Layer),分别用blockx_conv×表示
- 3个全连接层(Fully connected Layer),分别用fcx 与predictions表示·
- 5个池化层(Pool layer),分别用blockx_pool 表示
VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
评论
VGG16结构,包含多个卷积层、池化层和全连接层。
- 第1个块:
卷积层1:64个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block1_conv1'。
卷积层2:64个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block1_conv2'。
最大池化层:2x2大小的池化窗口,步幅为2,命名为'block1_pool'。 - 第2个块:
卷积层1:128个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block2_conv1'。
卷积层2:128个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block2_conv2'。
最大池化层:2x2大小的池化窗口,步幅为2,命名为'block2_pool'。 - 第3个块:
卷积层1:256个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block3_conv1'。
卷积层2:256个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block3_conv2'。
卷积层3:256个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block3_conv3'。
最大池化层:2x2大小的池化窗口,步幅为2,命名为'block3_pool'。 - 第4个块:
卷积层1:512个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block4_conv1'。
卷积层2:512个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block4_conv2'。
卷积层3:512个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block4_conv3'。
最大池化层:2x2大小的池化窗口,步幅为2,命名为'block4_pool'。 - 第5个块:
卷积层1:512个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block5_conv1'。
卷积层2:512个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block5_conv2'。
卷积层3:512个3x3大小的卷积核,使用ReLU激活函数,填充方式为"same",命名为'block5_conv3'。
最大池化层:2x2大小的池化窗口,步幅为2,命名为'block5_pool'。 - 全连接层部分:
展平层:将多维输入展平为一维。
全连接层1:具有4096个神经元,使用ReLU激活函数,命名为'fc1'。
全连接层2:具有4096个神经元,使用ReLU激活函数,命名为'fc2'。
五、模型训练
from tqdm import tqdm
import tensorflow.keras.backend as k
epochs = 10
lr = 1e-4
history_train_loss = []
history_train_accuracy = []
history_val_loss = []
history_val_accuracy = []
for epoch in range(epochs):
train_total = len(train_ds)
val_total = len(val_ds)
with tqdm(total=train_total, desc=f'Epoch{epoch + 1}/{epoch}', mininterval=1, ncols=100) as pbar:
lr = lr * 0.92
k.set_value(model.optimizer.lr, lr)
for image, label in train_ds:
history = model.train_on_batch(image, label)
train_loss = history[0]
train_accuracy = history[1]
pbar.set_postfix({'loss': '%.4f' % train_loss,
'accuracy': '%.4f' % train_accuracy,
'lr': k.get_value(model.optimizer.lr)}
)
pbar.update(1)
history_train_loss.append(train_loss)
history_train_accuracy.append(train_accuracy)
print('开始验证!')
with tqdm(total=val_total, desc=f'Epoch{epoch + 1}/{epoch}', mininterval=0.3, ncols=100) as pbar:
for image, label in val_ds:
history = model.test_on_batch(image, label)
val_loss = history[0]
val_accuracy = history[1]
pbar.set_postfix({'loss': '%.4f' % val_loss,
'accuracy': '%.4f' % val_accuracy}
)
pbar.update(1)
history_val_loss.append(val_loss)
history_val_accuracy.append(val_accuracy)
print('结束验证')
print('验证loss为:%.4f' % val_loss)
print('验证准确率为:%.4f' % val_accuracy)
六、模型评估
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, history_train_loss, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
七、预测
for images, labels in val_ds.take(1):
for i in range(8):
ax = plt.subplot(1,8,i + 1)
#显示图片
plt.imshow(images[i].numpy())
#给图片加一个维度
img_array = tf.expand_dims(images[i],0)
#使用模型预测图片中的动物
predictions = model.predict(img_array)
plt.title(class_names[np.argmax(predictions)])
plt.axis("off")