线性代数相关知识点回顾

矩阵的转置

(AB)T=BTAT

矩阵的逆

AB=BA=E,则B=A-1
若矩阵A可逆,则|A|不等于0
只有方阵才有伴随矩阵
在这里插入图片描述

特征值与特征向量

定义:
在这里插入图片描述
在这里插入图片描述
特征值的性质:
在这里插入图片描述
特征向量的性质: 第二条:注意线性无关与两两正交的区别
在这里插入图片描述

矩阵的秩

定义:
在这里插入图片描述
性质:
n阶可逆方阵,秩=n
可逆矩阵又称为满秩矩阵
矩阵的秩等于它行(列)向量组的秩
在这里插入图片描述

正交阵

在这里插入图片描述
正交阵一定是满秩矩阵

相似矩阵与相似对角化

相似矩阵的定义
在这里插入图片描述
相似矩阵性质:
在这里插入图片描述
矩阵的相似对角化定义:
在这里插入图片描述
矩阵可相似对角化的条件:
在这里插入图片描述
实对称矩阵必可相似于对角阵:
在这里插入图片描述
实对称阵A的同一特征值的不同特征向量之间估计也是正交的,因为实对称阵可正交相似对角化.
一般:不同特征值对应的特征向量之间线性无关.
在这里插入图片描述

特征子空间

定义:
在这里插入图片描述

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读