线性代数的本质——矩阵与线性变换

本文是对BiliBili上的一个系列视频的学习记录,非常推荐大家去B站上观看,记得三连,不要白嫖,链接:https://www.bilibili.com/video/av6731067?p=4

Unfortunately, no one can be told what the Matrix is. You have to see it for yourself. -Morpheus

很遗憾,矩阵是什么是说不清的。你必须自己亲眼看看。——墨菲斯

 

本节的主要思想:将矩阵视为变换本身,或者说矩阵==变换,矩阵就是变换

“变换”本身是“函数”的一种花哨的说法,他接收一个输入并输出一个结果,特别的在线性代数中,我们考虑的是接收一个向量并输出一个向量的变换。

使用“变换”和使用“函数”的意义是一致的,那么为什么使用变换一词呢?

使用“变换”是在暗示以特定方式来可视化这一输入——输出关系,这个词在暗示用动态的思维去思考。

当一个输入向量通过某种线性变换形成一个输出向量时,可以认为这个变换是描述输入向量到输出向量的移动与拉伸(这个过程)。

在线性代数中所考虑的只是线性变换,他具有两个性质:

1.直线在变换后任然是直线,不能有所弯曲

2.原点必须保持固定

而如何用数值形式来描述变换本身,是本节的主题。

将空间向量表示为,空间坐标基的线性组合,应该是符合习惯的,那么向量的表示形式应该如下:

                                                     V=ai+bj(a,b是常数,i,j是空间坐标基)

而向量的坐标表示,就体现了这种线性关系

                                                                        \begin{bmatrix} 3\\ 2 \end{bmatrix}=3\begin{bmatrix} 1\\ 0 \end{bmatrix}+2\begin{bmatrix} 0\\ 1 \end{bmatrix}

因为变换后的向量与原向量是线性关系,而任意向量与其空间坐标基是线性关系,所以只需记录基向量的坐标结果,则任意向量的变换结果已知。

设,基向量在变换后的为:

                                                                        \begin{bmatrix} 1\\ 0 \end{bmatrix}\begin{bmatrix} 0\\ 1 \end{bmatrix}\Rightarrow \begin{bmatrix} 3\\ 1 \end{bmatrix}\begin{bmatrix} 2\\ 3 \end{bmatrix}

那么向量\begin{bmatrix} 3\\ 2 \end{bmatrix},变换后的结果为:

                                                       \begin{bmatrix} 3\\ 2 \end{bmatrix}=3\begin{bmatrix} 1\\ 0 \end{bmatrix}+2\begin{bmatrix} 0\\ 1 \end{bmatrix}\Rightarrow 3\begin{bmatrix} 3\\ 1 \end{bmatrix}+2\begin{bmatrix} 2\\ 3 \end{bmatrix}=\begin{bmatrix} 13\\ 9 \end{bmatrix}

 所以,基向量在变换后得到的新向量,就已经确定了一个线性变换,一个二维线性变换仅由四个数字完全确定。

而我们常将变换后的基向量放在一起,称为矩阵(下面是一个2*2矩阵),他由特殊向量组成,即变换后的空间坐标基:

                                                                \begin{bmatrix} 1\\ 0 \end{bmatrix}\begin{bmatrix} 0\\ 1 \end{bmatrix}\Rightarrow \begin{bmatrix} 3\\ 1 \end{bmatrix}\begin{bmatrix} 2\\ 3 \end{bmatrix}\Rightarrow \begin{bmatrix} 3 &2 \\ 1 & 3 \end{bmatrix}

现在,如果你有一个描述线性变换的矩阵和一个向量,那么这个线性变换对这个向量的作用是很好求出的:

已知的线性变换\begin{bmatrix} a & b\\ c & d \end{bmatrix},向量\begin{bmatrix} x\\ y \end{bmatrix},作用:

                                                                 x\begin{bmatrix} a\\ c \end{bmatrix}+y\begin{bmatrix} b\\ d \end{bmatrix}=\begin{bmatrix} ax+by\\ cx+dy \end{bmatrix}

这与“缩放基向量再相加”的思想一致,而上式可以定义为矩阵向量乘法:

                                                            \begin{bmatrix} a &b \\ c &d \end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix}=x\begin{bmatrix} a\\ c \end{bmatrix}+y\begin{bmatrix} b\\ d \end{bmatrix}=\begin{bmatrix} ax+by\\ cx+dy \end{bmatrix}

\begin{bmatrix} a\\ c \end{bmatrix}\begin{bmatrix} b\\ d \end{bmatrix}线性相关,那么这个线性变换将二维空间压缩到一条直线或是一个点上。

矩阵为我们提供了一种描述线性变换的语言,而矩阵向量乘法就是计算线性变换作用于给定向量的一种途径。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫虫(——)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值