常用算法案例分析(二)

这篇博客详细探讨了动态规划和贪心算法在解决实际问题中的应用。动态规划部分涉及0-1背包问题、分割等和子集、零钱兑换等经典问题,讲解了如何构建状态转移方程并求解。贪心算法通过无重叠区间问题举例,解释了贪心选择性质。此外,还介绍了利用单调栈解决最长有效括号、接雨水和求最大矩形等问题。
摘要由CSDN通过智能技术生成

1、动态规划专题

这里特别要注意一点

在写出状态转移方程方程之后,要循环遍历求解时,要根据实际情况确定是从下往上遍历还是从上往下遍历

1.1、0-1背包的问题(子集问题)

问题描述
在这里插入图片描述

每篇动态规划文章都得重复一遍套路,步骤为

  • 第一步要明确两点,「状态」和「选择」。先说状态,如何才能描述一个问题局面?只要给定几个可选物品和一个背包的容量限制,就形成了一个背包问题,对不对?所以状态有两个,就是「背包的容量」和「可选择的物品」
    再说选择,也很容易想到啊,对于每件物品,你能选择什么?选择就是「装进背包」或者「不装进背包」嘛
    明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:
or 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)
  • 第二步要明确dp数组的定义。dp数组是什么?其实就是描述问题局面的一个数组。换句话说,我们刚才明确问题有什么「状态」,现在需要用dp数组把状态表示出来
    首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维dp数组,一维表示可选择的物品,一维表示背包的容量
    dp[i][w]的定义如下:对于前i个物品,当前背包的容量为w,这种情况下可以装的最大价值是dp[i][w]
    比如说,如果 dp[3][5] = 6,其含义为:对于给定的一系列物品中,若只对前 3 个物品进行选择,当背包容量为 5 时,最多可以装下的价值为 6
  • 第三步,根据「选择」,思考状态转移的逻辑(状态转移方程)

先重申一下刚才我们的dp数组的定义

dp[i][w]表示对于前i个物品,当前背包的容量为w时,这种情况下可以装下的最大价值是dp[i][w]

如果你没有把这第i个物品装入背包,那么很显然,最大价值dp[i][w]应该等于dp[i-1][w]。你不装嘛,那就继承之前的结果。

如果你把这第i个物品装入了背包,那么dp[i][w]应该等于dp[i-1][w-wt[i-1]] + val[i-1]

首先,由于i是从 1 开始的,所以对val和wt的取值是i-1

而dp[i-1][w-wt[i-1]]也很好理解:你如果想装第i个物品,你怎么计算这时候的最大价值?换句话说,在装第i个物品的前提下,背包能装的最大价值是多少

显然,你应该寻求剩余重量w-wt[i-1]限制下能装的最大价值,加上第i个物品的价值val[i-1],这就是装第i个物品的前提下,背包可以装的最大价值

综上就是两种选择,我们都已经分析完毕,也就是写出来了状态转移方程,可以进一步细化代码:

for i in [1..N]:
    for w in [1..W]:
        dp[i][w] = max(
            //当前物品的重量可以被装进包中
            dp[i-1][w],
            //不可以被装进包中
            dp[i-1][w - wt[i-1]] + val[i-1]
        )
return dp[N][W]
  • 最后一步,求边界的值

所以,最终的代码为:

int knapsack(int W, int N, vector<int>& wt, vector<int>& val) {
   
    // vector 全填入 0,base case 已初始化
    vector<vector<int>> dp(N + 1, vector<int>(W + 1, 0));
    for (int i = 1; i <= N; i++) {
   
        for (int w = 1; w <= W; w++) {
   
            if (w - wt[i-1] < 0) {
   
                // 当前背包容量装不下,只能选择不装入背包
                dp[i][w] = dp[i - 1][w];
            } else {
   
                // 装入或者不装入背包,择优
                dp[i][w] = max(dp[i - 1][w - wt[i-1]] + val[i-1], 
                               dp[i - 1][w]);
            }
        }
    }

    return dp[N][W];
}

1.2、分割等和子集(背包问题的变体)(子数组问题)

在这里插入图片描述

解题思路:我们可以先对集合求和,得出sum,把问题转化为背包问题,给一个可装载重量为sum/2的背包和N个物品,每个物品的重量为nums[i]。现在让你装物品,是否存在一种装法,能够恰好将背包装满

class Solution {
   
    //动态规划:等价于0-1背包问题
    //dp[i][j]:i为数组元素的个数,j表示目标值
    //dp[4][11]:若为true,则[1, 5, 11, 5]满足条件
    //状态为:数组元素个数和目标值,取值范围分别为:1-4和0-11
    //路径为:选择或者不选择
    public boolean canPartition(int[] nums) {
   
        //长度小于2,直接返回false
        if(nums.length<2){
   
            return false;
        }
        int sum=0;
        //求所有元素的和
        for(int e:nums){
   
            sum+=e;
        }
        //若和为奇数,返回false
        if(sum%2!=0){
   
            return false;
        }
        //dp[4][11];表示元素为4个、目标值为11,时,存在几个元素的和为目标值
        boolean[][] dp=new boolean[nums.length+1][sum/2+1];
        //若目标值为0,则一直为true
        for(int i=0;i<=nums.length;i++){
   
            dp[i][0]=true;
        }
        
        for(int i=1;i<=nums.length;i++){
   
            for(int j=1;j<=sum/2;j++){
   
                //注意:i可以等于nums.length,所以这里是nums[i]
                if(j<nums[i-1]){
   
                    //目标值小于当前的元素值,则如果前i-1个元素满足条件,则等于i时也满足条件
                    dp[i][j]=dp[i-1][j];
                }else{
   
                    //若前i-1个元素满足条件,则dp[i][j]=dp[i-1][j]
                    //若前i-1个元素不满足条件,则dp[i][j]=dp[i-1][j-nums[i-1]];
                    dp[i][j]=dp[i-1][j]||dp[i-1][j-nums[i-1]];
                }
                
            }
        }
        return dp[nums.length][sum/2];
    }
}

1.3、零钱兑换(二)(子数组问题)

在这里插入图片描述
解题思路:和上面两道题思路一样。
状态:硬币种类和总金额。
路径:是否选择当前的硬币。

class Solution {
   
    public int change(int amount, int[] coins) {
   
        //若总金额小于1,则直接返回1
        if(amount<1){
   
            return 1;
        }
        //若硬币种类为0,直接返回0
        if(coins.length<1){
   
            return 0;
        }
        //dp[i][j]:i代表硬币的种类,j代表总金额,dp[i][j]的意思是当硬币的种类为i,总金额为j时,的满足条件的总方式数。
        int[][] dp=new int[coins.length+1][amount+1];
        //若金额为0,则dp[i][0]恒等于1
        for(int i=0;i<=coins.length;i++){
   
            dp[i][0]=1;
        }
        for(int i=1;i<=coins.length;i++){
   
            for(int j=1;j<=amount;j++){
   
                //若当前硬币的值大于总金额,则dp[i][j]=dp[i-1][j];
                if(j<coins[i-
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值