企业数据应用的四个层级

本文通过案例详细阐述了企业数据应用的四个层级:描述性分析、诊断性分析、预测性分析和规范性分析。从用数据发现问题,发现规律,预测未来到制定行为规范,数据在企业管理中发挥着关键作用,帮助企业提升业绩并实现数字化转型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用数据发现问题
某企业有近 200 人的销售队伍,销售人员每天打电话、约客户、拜访客户,从而保证企业能够承接更多的业务, 卖出更多的产品 / 服务。 销售人员的活动每天都被统计并上报到总部,以及汇总到企业商业智能平台上, 这些数据包括销售人员的电话记录、 拜访记录、 在客户端打卡记录, 以及客户下单记录、 客户直接在官网下单的订单记录等。
将这些数据在平台上统计及汇总,能够看到每个销售人员都做了什么、平均每个电话的通话时长是多少、每天和多少个客户通电话、平均与每个客户每个月的通话次数是多少, 也包括每个业务员每个月外出拜访客户多少次、 平均每次拜访时间是多长、平均每次拜访成交多少销售额、 每个销售订单平均需要业务员打多少次电话和拜访多少次才能够成交, 从中也能够看到不同业务人员的差异。通过对以上各个指标进行排名,能够看到哪个业务员更勤奋、哪个业务员更高效、哪个业务员业绩更好。通过对历史数据进行对比,还可以看到哪个业务员在快速成长、哪个业务员的业绩止步不前等。
通过数据可以知道过去发生了什么,近 200 个业务员每天都在干什么、干得怎么样、 谁干得好、 谁干得差。 这就是数据应用的第一个层级: 用数据指标表征发生了什么, 并评价发生的结果, 找到问题所在, 能够监控业务的进展, 监控企业经营和管理活动,让所有的行为都能看得见。
用数据发现规律
此企业中有两名业务分析师,一名是初级业务分析师,一名是高级业务分析师。初级业务分析师负责统计以上指标,并将指标分发给各个相关部门,包括销售部门、人力绩效考核部门等。高级业务分析师要对这些数据进行分析,通过建立实时数据分析模型优化整个销售团队的绩效。
高级业务分析师对这些数据进行分析,主要发现以下几方面规律。
(1)高频度拜访客户的成交率达到了 70%,而做过一次拜访后的 5 天内不再拜访,那么客户的成交率为 38%。
(2)每次拜访客户之前一般要与客户通话 4 次以上,而且通话次数越高的客户成交率越高,且客单价比通话次数少的客户高出 20%。
(3)在企业中,电话通话次数与拜访次数的比例平均是 4.5:1,对于此数据,业绩好的业务经理平均在 6:1 以上,业绩差的业务经理的比例在 3.5:1 以下。
(4)业绩好的业务经理一般保持同客户 3 天 1 次的沟通频率,其中通过微信沟通平均每天都有,而业绩差的业务经理平均 7 天与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值