简易源码
一句话概括该论文:
这篇论文提出了用注意力机制来获取节点重要性的方式,通过获取的重要性程度,我们可以得到更加合理的节点表示,解决了以往GCN中必须知道全部节点的信息的问题,得到的结论是:通过使用注意力机制我们可以较为完美的知道每个节点的重要程度,通过这个重要程度我们可以有针对的对节点进行处理,增加了节点表达的能力。
以往GCN的缺点:
这个模型对于同阶的领域上分配给不同的邻居的权重是完全相同的,这一点限制了模型对于空间信息的相关性的捕捉能力。
GCN结合邻近节点特征的方式和图的结构息息相关,这局限了训练所的模型在其他图结构上的泛化能力。
GAT的优点:
在GAT中,图的每个节点可以根据邻居的特征来为其分配不同的权重。
GAT的另一个优点在于:引入了注意力机制后,只与相邻节点有关,即共享边的节点有关,无需得到整张图的信息。它使我们的技术直接适用于inductive learning,而传统GCN必须提前知道所有图结构的信息,所以属于transductive learning。
Introduction:
研究背景:
传统CNN的兴起在很多领域获得了很大的成功,