图神经网络(九):GRAPH ATTENTION NETWORKS

本文介绍了GRAPH ATTENTION NETWORKS(GAT),它通过注意力机制解决了GCN中节点权重相同的问题,增强了节点表示能力。GAT每个节点根据邻居特征分配不同权重,适用于inductive learning,而传统GCN属于transductive learning。实验表明,GAT在Transductive和Inductive learning中表现出色。
摘要由CSDN通过智能技术生成

简易源码

一句话概括该论文:
这篇论文提出了用注意力机制来获取节点重要性的方式,通过获取的重要性程度,我们可以得到更加合理的节点表示,解决了以往GCN中必须知道全部节点的信息的问题,得到的结论是:通过使用注意力机制我们可以较为完美的知道每个节点的重要程度,通过这个重要程度我们可以有针对的对节点进行处理,增加了节点表达的能力。

以往GCN的缺点:
这个模型对于同阶的领域上分配给不同的邻居的权重是完全相同的,这一点限制了模型对于空间信息的相关性的捕捉能力。

GCN结合邻近节点特征的方式和图的结构息息相关,这局限了训练所的模型在其他图结构上的泛化能力。

GAT的优点:
在GAT中,图的每个节点可以根据邻居的特征来为其分配不同的权重。

GAT的另一个优点在于:引入了注意力机制后,只与相邻节点有关,即共享边的节点有关,无需得到整张图的信息。它使我们的技术直接适用于inductive learning,而传统GCN必须提前知道所有图结构的信息,所以属于transductive learning。

Introduction:
研究背景:

传统CNN的兴起在很多领域获得了很大的成功,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值