审查意见通知书如何回复?意见陈述书模板

本文详细介绍了如何回应专利申请中关于说明书公开不充分的审查意见通知书,提供了三种处理方式:删除权利要求、进行争辩和引用证据。分别展示了删除权利要求的修改方式,通过附图和文字内容争辩公开充分性,以及引用现有技术证明本领域技术人员可实施的证据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总问题:

1.说明书未公开加热装置,不清楚是如何实现加热的;
2.弹性环型绷带固定在装置内部,无法取出平铺来实现对不同人体部位的调节;
3.说明书未记载部件之间的具体电路连接关系、电路工作原理,这些部件如何协同工作实现其发明目的。
4.附图中也缺少实施该设想的具体产品结构

说明书公开不充分

第一种处理方式,删除说明书公开不充分的地方所对应的权利要求。

尊敬的审查员老师,您好!
  感谢您辛苦的审查工作,申请人仔细阅读了此次审查意见通知书,现答复如下:
  针对您所指出的说明书公开不充分的部分对应于权利要求书中的权利要求1和权利比要求2,申请人现将权利要求1和权利要求2删除,在删除权利要求1和权利要求2之后,说明书公开不充分的部分不再要求进行保护,因此,克服了您所指出的说明书公开不充分的问题,并且,由于此次修改是删除权利要求,所以该修改没有超出原始申请文件记载的范围,符合专利法三十三条的规定。
  鉴于申请人已经进行了修改,请审查员老师继续审查,申请人将继续配合审查员老师的工作,再次对您辛苦的审查工作表示感谢。

第二种处理方式,进行争辩。

尊敬的审查员老师,您好!
  感谢您辛苦的审查工作,申请人仔细阅读了此次审查意见通知书,现答复如下: .
  申请人认为说明书公开是充分的,理由如下:
  判断说明书公开是否充分要看说明书全部的内容,

内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练和强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性和鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力和广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述和MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解和实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值