【深度学习】CNN模型的评估与验证

CNN模型的评估与验证

有的时候我们自己设计了一个深度神经网络模型,或是基于预训练网络进行微调并训练得到了一个模型,评估这个模型的优劣都有哪些标准呢?除了常见的acc,loss,收敛速度等,还有什么其他的评价标准吗?

https://www.cnblogs.com/tectal/p/10870064.html

https://www.cnblogs.com/skyfsm/p/8467613.html

https://blog.csdn.net/qq_35008279/article/details/89306946

评估所训练出来的CNN分类模型的性能。主要有几点:验证集预测、多分类混淆矩阵、多分类评价指标、预测结果堆叠图。

一般来说,混淆矩阵对角线颜色越深,说明预测结果越准确,所训练的模型的泛化性能越强。由结果可以看到,其对角线颜色较深,模型较好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值