目标检测-R-CNN模型

前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。

1.1 完整R-CNN结构

不使用暴力方法,而是用候选区域方法(region proposal method),创建目标检测的区域改变了图像领域实现物体检测的模型思路,R-CNN是以深度神经网络为基础的物体检测的模型 ,R-CNN在当时以优异的性能令世人瞩目,以R-CNN为基点,后续的SPPNet、Fast R-CNN、Faster R-CNN模型都是照着这个物体检测思路。
在这里插入图片描述
步骤(以AlexNet网络为基准)

1.找出图片中可能存在目标的侯选区域region proposal
2.进行图片大小调整为了适应AlexNet网络的输入图像的大小227×227,通过CNN对候选区域提取特征向量,2000个建议框的CNN特征组合成2000×4096维矩阵
3.将2000×4096维特征与20个SVM组成的权值矩阵4096×20相乘(20种分类,SVM是二分类器,则有20个SVM),获得2000×20维矩阵
4.分别对2000×20维矩阵中每一列即每一类进行非极大值抑制(NMS:non-maximum suppression)剔除重叠建议框,得到该列即该类中得分最高的一些建议框
5.修正bbox,对bbox做回归微调

1.1.1 候选区域

选择性搜索(SelectiveSearch,SS)中,首先将每个像素作为一组。然后,计算每一组的纹理,并将两个最接近的组结合起来。但是为了避免单个区域吞噬其他区域,我们首先对较小的组进行分组。我们继续合并区域,直到所有区域都结合在一起。下图第一行展示了如何使区域增长,第二行中的蓝色矩形代表合并过程中所有可能的 ROI。
在这里插入图片描述
SelectiveSearch在一张图片上提取出来约2000个侯选区域,需要注意的是这些候选区域的长宽不固定。 而使用CNN提取候选区域的特征向量,需要接受固定长度的输入,所以需要对候选区域做一些尺寸上的修改。

1.1.2 Crop+Warp

传统的CNN限制了输入必须固定大小,所以在实际使用中往往需要对原图片进行crop或者warp的操作

crop:截取原图片的一个固定大小的patch
warp:将原图片的ROI缩放到一个固定大小的patch
无论是crop还是warp,都无法保证在不失真的情况下将图片传入到CNN当中。会使用一些方法尽量让图片保持最小的变形。

1.各向异性缩放:即直接缩放到指定大小,这可能会造成不必要的图像失真

2.各向同性缩放:在原图上出裁剪侯选区域, (采用侯选区域的像素颜色均值)填充到指定大小在边界用固定的背景颜色
在这里插入图片描述

1.1.3 CNN网络提取特征

在侯选区域的基础上提取出更高级、更抽象的特征,这些高级特征是作为下一步的分类器、回归的输入数据。
在这里插入图片描述
提取的这些特征将会保存在磁盘当中(这些提取的特征才是真正的要训练的数据)

1.1.4 特征向量训练分类器SVM

假设一张图片的2000个侯选区域,那么提取出来的就是2000 x 4096这样的特征向量(R-CNN当中默认CNN层输出4096特征向量)。那么最后需要对这些特征进行分类,R-CNN选用SVM进行二分类。假设检测N个类别,那么会提供20个不同类别的SVM分类器,每个分类器都会对2000个候选区域的特征向量分别判断一次,这样得出[2000, 20]的得分矩阵,如下图所示
在这里插入图片描述
更通俗的解释:

假设原图片有2000个候选区,将其输入进一个CNN中(进行卷积、池化…得到各种抽象的特征),输出2000x4096的特征向量。此时找到N个(需要分类多少个找多少个,如分为20类)SVM分类器,每个分类器都会对2000个候选区域的特征向量分别判断一次,即2000x4094的特征向量分别与N个不同类的SVM分类器,然后再得到最终的得分矩阵,矩阵默认N行(代表N类),2000列(2000个候选区),其中一共是2000N个"数",这些"数"即该候选区属于某一类的概率。

每个SVM分类器做的事情

判断2000个候选区域是某类别,还是背景

1.1.5 非最大抑制(NMS)

目的
筛选候选区域,得到最终候选区域结果
迭代过程
对于所有的2000个候选区域得分进行概率筛选
然后对剩余的候选框,每个类别进行IoU(交并比)>= 0.5 筛选
在这里插入图片描述
假设现在滑动窗口有:A、B、C、D、E 5个候选框,

第一轮:假设B是得分最高的,与B的IoU>0.5删除。现在与B计算IoU,DE结果>0.5,剔除DE,B作为一个预测结果
第二轮:AC中,A的得分最高,与A计算IoU,C的结果>0.5,剔除C,A作为一个结果
最终结果为在这个5个中检测出了两个目标为A和B

1.1.6修正候选区域(边框回归)

那么通过非最大抑制筛选出来的候选框不一定就非常准确怎么办?R-CNN提供了这样的方法,建立一个bbox regressor

回归用于修正筛选后的候选区域,使之回归于ground-truth,默认认为这两个框之间是线性关系,因为在最后筛选出来的候选区域和ground-truth很接近了
修正过程(线性回归)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
解释:这里我们经过2.6步NMS预测得到的bbox是A筐,再经过2.7步,边框回归,进行修正,得到G’,减少了原A与真实边框G的误差。

1.2 R-CNN训练过程

步骤:正负样本准备+预训练+微调网络+训练SVM+训练边框回归器

1.2.1 正负样本准备

对于训练集中的所有图像,采用selective search方式来获取,最后每个图像得到2000个region proposal。但是每个图像不是所有的候选区域都会拿去训练。保证正负样本比例1:3。
在这里插入图片描述
这样得出若干个候选区域以及对应的标记结果。

1.2.2 预训练(pre-training)

CNN模型层数多,模型的容量大,通常会采用2012年的著名网络AlexNet来学习特征,包含5个卷积层和2个全连接层,利用大数据集训练一个分类器,比如著名的ImageNet比赛的数据集,来训练AlexNet,保存其中的模型参数。

所谓预训练,其实就是拿别人训练好的模型来用,但是还没有真的开始训练。

1.2.3 微调(fine-tuning)

AlexNet是针对ImageNet训练出来的模型,卷积部分可以作为一个好的特征提取器,后面的全连接层可以理解为一个好的分类器。R-CNN需要在现有的模型上微调卷积参数。

将第一步中得到的样本进行尺寸变换,使得大小一致,然后作为预训练好的网络的输入,继续训练网络(迁移学习)
所谓微调,就是预训练拿来用的model1,给model1输入我们的数据(固定尺寸的图像),然后训练得到model2,model2就是我们微调后的模型,本质就是迁移学习,不同于预训练的是,这是真的训练了。

1.2.4 SVM分类器

针对每个类别训练一个SVM的二分类器。举例:猫的SVM分类器,输入维度是2000x4096,目标还是之前第一步标记是否属于该类别猫,训练结果是得到SVM的权重矩阵W,W的维度是4096x20。

1.2.5 bbox回归器训练(边框回归)

只对那些跟ground truth的IoU超过某个阈值且IOU最大的region proposal回归,其余的region proposal不参与。

1.3 R-CNN测试过程

输入一张图像,利用selective search得到2000个region proposal。

对所有region proposal变换到固定尺寸并作为已训练好的CNN网络的输入,每个候选框得到的4096维特征

采用已训练好的每个类别的svm分类器对提取到的特征打分,所以SVM的weight matrix(权重矩阵)是4096xN,N是类别数,这里一共有20个SVM,得分矩阵是2000x20

采用non-maximun suppression(NMS)去掉候选框

得到region proposal(oU超过某个阈值且IOU最大)进行边框回归。

1.4 总结

1.4.1 缺点

1、训练阶段多:步骤繁琐: 微调网络+训练SVM+训练边框回归器。

2、训练耗时:占用磁盘空间大:5000张图像产生几百G的特征文件。(VOC数据集的检测结果,因为SVM的存在)

3、处理速度慢: 使用GPU, VGG16模型处理一张图像需要47s。

4、图片形状变化:候选区域要经过crop/warp进行固定大小,无法保证图片不变形

————————————————
版权声明:本文为CSDN博主「MIge_」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/MIge_/article/details/108529012

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用MATLAB训练Faster R-CNN模型的代码示例: 1. 准备数据 首先,需要准备一个数据集并将其分成训练集和验证集。数据集应包含图像和相应的标注文件。 2. 定义网络架构 下面是在MATLAB中定义网络架构的示例代码: ```matlab layers = [ imageInputLayer([224 224 3], 'Name', 'input') convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1') reluLayer('Name', 'relu1') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool1') convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2') reluLayer('Name', 'relu2') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool2') convolution2dLayer(3, 64, 'Padding', 'same', 'Name', 'conv3') reluLayer('Name', 'relu3') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool3') convolution2dLayer(3, 128, 'Padding', 'same', 'Name', 'conv4') reluLayer('Name', 'relu4') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool4') convolution2dLayer(3, 256, 'Padding', 'same', 'Name', 'conv5') reluLayer('Name', 'relu5') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool5') fullyConnectedLayer(512, 'Name', 'fc6') reluLayer('Name', 'relu6') fullyConnectedLayer(256, 'Name', 'fc7') reluLayer('Name', 'relu7') fullyConnectedLayer(numClasses, 'Name', 'fc8') softmaxLayer('Name', 'softmax') classificationLayer('Name', 'classoutput')]; ``` 3. 训练模型 使用trainFasterRCNNObjectDetector函数可以训练Faster R-CNN模型,示例代码如下: ```matlab options = trainingOptions('sgdm', ... 'MiniBatchSize', 32, ... 'InitialLearnRate', 1e-3, ... 'MaxEpochs', 10, ... 'Verbose', true); detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ... 'NegativeOverlapRange', [0 0.3], ... 'PositiveOverlapRange', [0.5 1], ... 'BoxPyramidScale', 1.2); save('faster_rcnn_detector.mat', 'detector'); ``` 其中,trainingData是包含训练数据的imds object和bbox label datastore的结构体。 4. 测试模型 使用detect方法可以对单张图像进行目标检测,示例代码如下: ```matlab img = imread('test.jpg'); [bboxes, scores, labels] = detect(detector, img); threshold = 0.5; idx = scores > threshold; bboxes = bboxes(idx, :); scores = scores(idx); labels = labels(idx); annotatedImg = insertObjectAnnotation(img, 'rectangle', bboxes, scores); imshow(annotatedImg); ``` 其中,test.jpg是要检测的图像文件名。检测结果将显示在图像上。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值