5793. 迷宫中离入口最近的出口

这篇博客介绍了一种使用非递归BFS(广度优先搜索)解决寻找迷宫中离入口最近出口的问题。题目给出了具体的迷宫矩阵和入口位置,要求在不超过迷宫边界的条件下找到最短路径。示例展示了不同情况下的解决方案,并提供了C++代码实现。文章强调了路径步数和出口判断的重要性,并展示了如何更新和扩展搜索队列来找到最近的出口。
摘要由CSDN通过智能技术生成

title: 5793. 迷宫中离入口最近的出口
date: 2021-07-11 00:41:16
tags: [leetcode]


5793. 迷宫中离入口最近的出口

给你一个 m x n 的迷宫矩阵 maze下标从 0 开始),矩阵中有空格子(用 '.' 表示)和墙(用 '+' 表示)。同时给你迷宫的入口 entrance ,用 entrance = [entrancerow, entrancecol] 表示你一开始所在格子的行和列。

每一步操作,你可以往 或者 移动一个格子。你不能进入墙所在的格子,你也不能离开迷宫。你的目标是找到离 entrance 最近 的出口。出口 的含义是 maze 边界 上的 空格子entrance 格子 不算 出口。

请你返回从 entrance 到最近出口的最短路径的 步数 ,如果不存在这样的路径,请你返回 -1

示例 1:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iLmxlQQf-1625935530273)(https://assets.leetcode.com/uploads/2021/06/04/nearest1-grid.jpg)]

输入:maze = [["+","+",".","+"],[".",".",".","+"],["+","+","+","."]], entrance = [1,2]
输出:1
解释:总共有 3 个出口,分别位于 (1,0),(0,2) 和 (2,3) 。
一开始,你在入口格子 (1,2) 处。
- 你可以往左移动 2 步到达 (1,0) 。
- 你可以往上移动 1 步到达 (0,2) 。
从入口处没法到达 (2,3) 。
所以,最近的出口是 (0,2) ,距离为 1 步。

示例 2:

img

输入:maze = [["+","+","+"],[".",".","."],["+","+","+"]], entrance = [1,0]
输出:2
解释:迷宫中只有 1 个出口,在 (1,2) 处。
(1,0) 不算出口,因为它是入口格子。
初始时,你在入口与格子 (1,0) 处。
- 你可以往右移动 2 步到达 (1,2) 处。
所以,最近的出口为 (1,2) ,距离为 2 步。

示例 3:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CgwVUk79-1625935530278)(https://assets.leetcode.com/uploads/2021/06/04/nearest3-grid.jpg)]

输入:maze = [[".","+"]], entrance = [0,0]
输出:-1
解释:这个迷宫中没有出口。

提示:

  • maze.length == m
  • maze[i].length == n
  • 1 <= m, n <= 100
  • maze[i][j] 要么是 '.' ,要么是 '+'
  • entrance.length == 2
  • 0 <= entrancerow < m
  • 0 <= entrancecol < n
  • entrance 一定是空格子。

C++ 代码

// 迷宫题,一般就是 dfs 和 bfs
// 这里我使用 非递归bfs
class Solution {
public:
    const int DIR[4][2] = { {1,0} ,{-1,0},{0,1},{0,-1} };
    int nearestExit(vector<vector<char>>& maze, vector<int>& s) {
        int rows = maze.size(), cols = maze[0].size();
        queue<pair<int, int>> q;
        maze[s[0]][s[1]] = '+';
        for (int i = 0; i < 4; i++) {
            int x = s[0] + DIR[i][0];
            int y = s[1] + DIR[i][1];
            if (x >= 0 && x < rows && y >= 0 && y < cols && maze[x][y] != '+') {
                q.push({ x,y });
            }
        }

        if (q.empty()) {
            return -1;
        }

        int ret = 0;
        bool flag = false;
        while (!q.empty()) {
            ret++;
            int cnt = q.size();
            cout << "cnt:" << cnt << endl;
            while (cnt--) {
                auto t = q.front();
                q.pop();
                cout << ret << endl;
                cout << t.first << " " << t.second << endl;
                if (t.first == 0 || t.first == rows - 1 || t.second == 0 || t.second == cols - 1) {
                    flag = true;
                    break;
                }

                for (int i = 0; i < 4; i++) {
                    int x = t.first + DIR[i][0];
                    int y = t.second + DIR[i][1];
                    if (x >= 0 && x < rows && y >= 0 && y < cols && maze[x][y] != '+') {
                        q.push({ x,y });
                        maze[x][y] = '+';
                    }
                }
            }
            if (flag) {
                break;
            }
        }

        return flag ? ret : -1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值