Magic Beans

链接
题意:
给定 n n n 个魔豆和二维目的地 ( x , y ) (x,y) (x,y),每颗魔豆有两个属性 ( a , b ) (a,b) (a,b),如果在点 ( x 1 , y 1 ) (x1,y1) (x1,y1) 吃下这颗魔豆就会从移动到 ( x 1 + a , y 1 + b ) (x1+a,y1+b) (x1+a,y1+b) ,从 ( 0 , 0 ) (0,0) (0,0) 开始,有多少种方案可以到达 ( x , y ) (x,y) (x,y),魔豆可以任意选取,相同的魔豆不同排列也被视为不同方案
( 1 < = n < = 32 , − 1 0 9 < = d x , d y < = 1 0 9 , − 1 0 9 < = a i , b i < = 1 0 9 ) (1 <= n <=32, -10^{9}<= dx,dy <= 10^{9},-10^{9}<= ai,bi <= 10^{9}) (1<=n<=32,109<=dx,dy<=109,109<=ai,bi<=109)

分析:
n n n 特别小,我们尝试把它二分成两部分 n 1 n_1 n1 n 2 n_2 n2,每部分统计所有的选择,排序,去重,这样量级上限是 2 16 2^{16} 216 ,完全可以接受,然后枚举第二个部分的点,从第一部分里二分查找是否有可以到达终点的方案就可以了

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = 1e9+7;
int n,m;
ll ex,ey,fac[40];
struct node{
    ll x,y,cnt,time;
    bool operator == (const node& a)const{
	    return a.x==x&&a.y==y&&a.cnt==cnt;
	}
}e1[20],e2[20],a[1<<17],b[1<<17],A[1<<17],B[1<<17];
int cnta,cntb,cntA,cntB;
bool cmp(node a,node b)
{
    if(a.x==b.x&&a.y==b.y) return a.cnt<b.cnt;
    if(a.x==b.x) return a.y<b.y;
    return a.x<b.x;
}

void init(int m,node s[],int &cnts,node S[],int &cntS,node e[])
{
    for(int i=0;i<(1<<m);i++)
    {
        ll x=0,y=0,cnt=0;
        for(int k=0;k<m;k++)
            if((1<<k)&i)
                x+=e[k].x,y+=e[k].y,cnt++;
        s[cnts++]=(node){x,y,cnt,1};
    } 
    sort(s,s+cnts,cmp);
    for(int i=0;i<cnts;i++)
    {
        int tim=1;
        while(i+1<cnts&&s[i]==s[i+1])  i++,tim++;
        S[cntS]=s[i];
        S[cntS++].time=tim;
    }
}


int main()
{
    fac[1]=1; for(int i=2;i<=32;i++) fac[i]=fac[i-1]*i%MOD;
    int T; cin>>T;
    while(T--)
    {
        cnta=cntb=cntA=cntB=0;
        cin>>n>>ex>>ey;
        m=n/2;
        for(int i=0;i<m;i++) cin>>e1[i].x>>e1[i].y;
        for(int i=0;i<n-m;i++) cin>>e2[i].x>>e2[i].y;
        init(m,a,cnta,A,cntA,e1);
        init(n-m,b,cntb,B,cntB,e2);
        
        ll ans=0;
        for(int i=0;i<cntB;i++)
        {
            node res;
            res.x=ex-B[i].x,res.y=ey-B[i].y;
            int l=0,r=cntA-1,mid=l,flag=0;
            while(l<=r)
            {
                mid=(l+r)>>1;
                if(A[mid].x==res.x&&A[mid].y==res.y){flag=1;break;}
                if(res.x<A[mid].x|| res.x==A[mid].x&&res.y<A[mid].y) r=mid-1;
                else l=mid+1;
            }
            if(!flag) continue;
            ans+=fac[A[mid].cnt+B[i].cnt]*A[mid].time%MOD*B[i].time%MOD;
            ans%=MOD;
            l=mid-1,r=mid+1;
            while(l>=0&&A[l].x==res.x&&A[l].y==res.y){
            	ans+=fac[A[l].cnt+B[i].cnt]*A[l].time%MOD*B[i].time%MOD;
                ans%=MOD;
                l--;
			}
			while(r<cntA&&A[r].x==res.x&&A[r].y==res.y){
            	ans+=fac[A[r].cnt+B[i].cnt]*A[r].time%MOD*B[i].time%MOD;
                ans%=MOD;
                r++;
			}
        }
        cout<<ans<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值