读文献——Amplitude和Signal-to-Noise Ratio (SNR)解析式理论推导

Zhong S, Wei K, Gao S, et al. Stochastic resonance in a linear fractional Langevin equation[J]. Journal of Statistical Physics, 2013, 150: 867-880.

一.Introduction

二.System Model

2.1 模型的构建

文章从由分数高斯噪声(FGN)驱动的广义Langevin方程(GLE)开始:

x(t)粒子的位移
\ddot{x}(t)牛顿加速度项
\gamma摩擦系数
\omega_0固有频率
A_0外部周期力的幅度
\Omega频率

2.2 外部噪声Z(t)

Z(t)\omega_0的波动,建模为双态噪声,取值为\{\mathrm{a},-\mathrm{a}\},且概率相同为P_s(a)=P_s(-a)=1 / 2\langle Z(t)\rangle=0

  • 双态噪声:只能取两个值,通常记为 +a和 −a,其中 a 是噪声的幅度。这两个值出现的概率相等,分别为 0.5,所以噪声值的分布对称。
  • 关联率v:噪声在这两个值之间随机切换。切换的过程是由一个固定的关联率v 控制的,即噪声在两个值之间转换的速率。(噪声相关系数)

Z(t)有统计性质:\langle Z(t)\rangle=0, \quad\langle Z(t) Z(s)\rangle=a^2 \exp (-v|t-s|),

其中a^2是噪声强度,v是关联率。

  • \langle Z(t)\rangle=0:其中的\langle Z(t)\rangle表示噪声Z (t)在时间t上的平均值;噪声 Z(t) 在 t时刻的平均值为零,即噪声的正负值在长期内相互抵消。
  • \quad\langle Z(t) Z(s)\rangle=a^2 \exp (-v|t-s|):噪声 Z(t) 和 Z(s) 在两个不同时间点 t 和 s 上的乘积的平均值或期望值,这实际上是噪声的自相关函数。噪声在时间点 t和 s 上的相关性随着时间间隔 ∣t−s∣ 的增加而以指数衰减,衰减率由关联率 v 控制。

2.3 内部噪声W_H(t)

W_H(t)是定义为\sqrt{2 k_B T} \frac{d B_H(t)}{d t}分数高斯噪声 (FGN),其中B_H(t)是Hurst参数0<H<1分数布朗运动 (FBM)

2.4 自相关性和记忆核\eta_H(t)

  • 当 0<H<1/2 时,自相关性为负,运动表现为次扩散
  • 当 1/2<H<1 时,自相关性为正,运动表现为超扩散
  • 当 H=1/2时,运动表现为正常扩散

主要目的是解释分数阶Langevin方程中噪声和记忆核的数学特性,并通过波动-耗散定理连接二者。特别强调Hurst参数的选择条件,以确保记忆核的正值特性。

2.6 分数阶Langevin方程(FLE)

FLE (7)能描述具有异常次扩散的系统中的随机动力学。解释了记忆核和噪声之间的关系,并强调了这种方程在处理异常次扩散系统中的优势。

三.The Amplitude and Signal-to-Noise Ratio (SNR) of the Output Signal

这部分将获得输出幅度和信噪比(SNR)的精确表达式。

Shapiro-Loginov公式:处理诸如 〈Z(t)x(t)〉这样的乘积的期望值。

\frac{d}{d t}\langle Z(t) x(t)\rangle=\langle Z(t) \dot{x}(t)\rangle-v\langle Z(t) x(t)\rangle

\frac{d}{d t}\langle Z(t) \dot{x}(t)\rangle=\langle Z(t) \ddot{x}(t)\rangle-v\langle Z(t) \dot{x}(t)\rangle

还没学会推系数...

四.Discussion and Conclusion

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值