使用Ollama配置本地微调的gguf模型文件

在之前的文章中,我们已经得到了经过我们微调的大语言模型,不管是在本地部署使用或者是用OpenWebUI界面部署在服务器上达到和chatGPT界面类似的效果,使用Ollama部署一定是最好的选择。以下均为在Ubuntu系统(Linux)上的测试。

如果需要在Windows上部署可以查看Ollama的官方文档:

https://github.com/ollama/ollama

一、安装Ollama

Linux安装Ollama命令行:

curl -fsSL https://ollama.com/install.sh | sh

安装不了你可以直接进入网页:https://ollama.com/install.sh,直接看到代码,复制下来创建install.sh放进去用sh install.sh 跑一下应该也行。

尝试跑一个开源模型测试一下是否成功运行,模型会自动下载开源大模型Ollama支持十几个不同参数量常用的开源大语言模型,这一步可以忽略:

ollama run llama3.1

在对话框输入/help查看对话可用指令,输入/bye退出对话模式。

二、准备工作

首先我们要新建一个文件夹创建.modelfile文件并将模型文件也放入其中,两

### 对Ollama模型进行微调的方法 对于希望对 Ollama 大型语言模型 (LLM) 进行微调的情况,通常需要遵循特定的工作流程来确保调整后的模型能够更好地适应具体应用场景的需求。此过程涉及准备数据集、配置训练环境以及执行实际的微调操作。 #### 准备高质量的数据集 为了有效提升模型性能,在开始之前应当收集并整理一批针对性强且质量高的领域内语料作为训练素材[^1]。这些数据应该经过清洗处理去除噪声,并按照一定格式组织起来以便后续使用。 #### 配置合适的硬件资源 鉴于大型预训练模型参数量巨大,因此建议采用具备强大计算能力的 GPU 或 TPU 设备来进行加速运算。此外还需要考虑内存容量等因素以支持整个训练过程中所需的各项资源消耗。 #### 使用OLLAMA框架完成微调 当一切就绪之后就可以利用 Ollama 提供的相关工具和技术栈开展具体的微调工作了: - **安装依赖库**:依据官方文档指导安装必要的 Python 库和其他软件包; - **加载基础模型**:通过指定路径读取已有的 LLM 模型文件(如 gguf 文件),这一步骤可以借助 ollama 所给出的具体命令实现; - **定义优化目标函数**:根据业务需求设定损失函数形式及其权重系数等超参设置; - **编写自定义方法 `askLocalEchartsModel`**: ```python def askLocalEchartsModel(prompt): """ 向本地微调过的 Echarts 模型发起请求 参数: prompt (str): 用户输入的问题或指令 返回: str: 模型生成的回答内容 """ model = "path/to/microtuned_model" # 微调后保存的位置 response = ollama_api.query(model=model, input=prompt) return response['output'] ``` 上述代码片段展示了如何创建一个名为 `askLocalEchartsModel` 的函数用于向已经过微调处理的 Echarts 版本提问[^2]。 #### 记录实验日志与评估效果 在整个开发周期里持续记录下每次迭代产生的变化情况非常重要,这样有助于分析不同版本间的表现差异从而做出更合理的改进决策。同时也要定期测试新旧两版之间针对相同任务场景下的输出准确性对比,以此衡量当前所做的努力是否达到了预期目的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值