R语言mapply函数的灵活应用

本文通过2011.txt文本数据,介绍如何使用R语言的mapply函数灵活提取字符,帮助读者深入理解该函数的工作原理。
摘要由CSDN通过智能技术生成

   对于文本数据2011.txt我们灵活提取字符,借助这个案例理解mapply函数的机制。

df1 <- readLines("2011.txt")
df1 <- df1[7:10] #采取部分数据作为分享
df1

以上是部分数据的内容。

下面我们进行提取。

 

 

a <- sapply(space[2]-1, function(x) {
               mapply(substr,list(df1),start = x,
                        stop = x)
              } )

sapply(c(5,7),function(x){
               mapply(substr,list(df1),start = rep(x,2),
                       stop = rep(x,1))})

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麻利麻利哄吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值