用贝叶斯估计法推出朴素贝叶斯法中的慨率估计公式

解答思路:

  1. 贝叶斯估计的一般步骤(详见习题1.1第4步);
  2. 证明公式4.11: 假设概率 P λ ( Y = c i ) P_\lambda\left(Y=c_i\right) Pλ(Y=ci) 服从狄利克雷(Dirichlet) 分布,根据贝叶斯公式,推导后验概率也服从Dirichlet分布,求参数期望;
  3. 证明公式4.10:证明同公式4.11。
    解答步骤:
    确定参数 θ \theta θ 的先验概率 p ( θ ) p(\theta) p(θ)
    根据样本集 D = x 1 , x 2 , … , x n D=x_1, x_2, \ldots, x_n D=x1,x2,,xn ,计算似然函数 P ( D ∣ θ ) : P ( D ∣ θ ) = ∏ i = 1 n P ( x n ∣ D ) P(D \mid \theta): P(D \mid \theta)=\prod_{i=1}^n P\left(x_n \mid D\right) P(Dθ):P(Dθ)=i=1nP(xnD)
    利用贝叶斯公式,求 θ \theta θ 的后验概率: P ( θ ∣ D ) = P ( D ∣ θ ) P ( θ ) ∫ Θ P ( D ∣ θ ) P ( θ ) d θ P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{\int_{\Theta} P(D \mid \theta) P(\theta) d \theta} P(θD)=ΘP(Dθ)P(θ)dθP(Dθ)P(θ)
    计算后验概率分布参数 θ \theta θ 的期望,并求出贝叶斯估计值: θ ^ = ∫ Θ θ ⋅ P ( θ ∣ D ) d θ \hat{\theta}=\int_{\Theta} \theta \cdot P(\theta \mid D) d \theta θ^=ΘθP(θD)dθ
    第2步:证明公式(4.11)
    P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ , k = 1 , 2 , … , K P_\lambda\left(Y=c_k\right)=\frac{\sum_{i=1}^N I\left(y_i=c_k\right)+\lambda}{N+K \lambda}, \quad k=1,2, \ldots, K Pλ(Y=ck)=N+Kλi=1NI(yi=ck)+λ,k=1,2,,K
    证明思路:
    条件假设: P λ ( Y = c k ) = u k P_\lambda\left(Y=c_k\right)=u_k Pλ(Y=ck)=uk ,且服从参数为 λ \lambda λ 的Dirichlet分布; 随机变量 Y Y Y 出现 y = c k y=c_k y=ck 的次数为 m k m_k mk
    得到 u u u 的先验概率 P ( u ) P(u) P(u)
    得到似然函数 P ( m ∣ u ) P(m \mid u) P(mu)
    根据贝叶斯公式,计算后验概率 P ( u ∣ m ) P(u \mid m) P(um)
    计算 u u u 的期望 E ( u ) E(u) E(u)
    证明步骤:
    1.条件假设:根据朴素贝叶斯法的基本方法,训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \ldots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)} ,假设:
    (1) 随机变量 Y Y Y 出现 y = c k y=c_k y=ck 的次数为 m k m_k mk ,即 m k = ∑ i = 1 N I ( y i = c k ) m_k=\sum_{i=1}^N I\left(y_i=c_k\right) mk=i=1NI(yi=ck) ,可知 ∑ k = 1 K m k = N \sum_{k=1}^K m_k=N k=1Kmk=N ( y y y 总共有 N N N 个 );
    (2) P λ ( Y = c k ) = u k P_\lambda\left(Y=c_k\right)=u_k Pλ(Y=ck)=uk ,随机变量 u k u_k uk 服从参数为 λ \lambda λ 的Dirichlet分布。
    得到先验概率
    2.根据假设(2)和Dirichlet分布的定义,可得先验概率为
    P ( u ) = P ( u 1 , u 2 , … , u K ) = C ( λ ) ∏ k = 1 K u k λ − 1 P(u)=P\left(u_1, u_2, \ldots, u_K\right)=C(\lambda) \prod_{k=1}^K u_k^{\lambda-1} P(u)=P(u1,u2,,uK)=C(λ)k=1Kukλ1
    3 得到似然函数
    m = ( m 1 , m 2 , … , m K ) T m=\left(m_1, m_2, \ldots, m_K\right)^T m=(m1,m2,,mK)T ,可得似然函数为
    P ( m ∣ u ) = u 1 m 1 ⋅ u 2 m 2 ⋯ u K m K = ∏ k = 1 K u k m k P(m \mid u)=u_1^{m_1} \cdot u_2^{m_2} \cdots u_K^{m_K}=\prod_{k=1}^K u_k^{m_k} P(mu)=u1m1u2m2uKmK=k=1Kukmk
    4 得到后验概率分布
    结合贝叶斯公式,求 u u u 的后验概率分布,可得
    P ( u ∣ m ) = P ( m ∣ u ) P ( u ) P ( m ) P(u \mid m)=\frac{P(m \mid u) P(u)}{P(m)} P(um)=P(m)P(mu)P(u)
    根据假设(1),可得
    P ( u ∣ m , λ ) ∝ P ( m ∣ u ) P ( u ∣ λ ) ∝ ∏ k = 1 K u k λ + m k − 1 P(u \mid m, \lambda) \propto P(m \mid u) P(u \mid \lambda) \propto \prod_{k=1}^K u_k^{\lambda+m_k-1} P(um,λ)P(mu)P(uλ)k=1Kukλ+mk1
    上式表明,后验概率分布 P ( u ∣ m , λ ) P(u \mid m, \lambda) P(um,λ) 也服从Dirichlet分布
    5 得到随机变量 u u u 的期望
    根据后验概率分布 P ( u ∣ m , λ ) P(u \mid m, \lambda) P(um,λ) 和假设(1),求随机变量 u u u 的期望,可得
    E ( u k ) = α k ∑ k = 1 K α k E\left(u_k\right)=\frac{\alpha_k}{\sum_{k=1}^K \alpha_k} E(uk)=k=1Kαkαk
    其中 α k = λ + m k \alpha_k=\lambda+m_k αk=λ+mk ,则
    E ( u k ) = α k ∑ k = 1 K α k = λ + m k ∑ k = 1 K ( λ + m k ) = λ + m k ∑ k = 1 K λ + ∑ k = 1 K m k ( ∵ ∑ k = 1 K m k = N ) = λ + m k K λ + N ( ∵ m k = ∑ i = 1 N I ( y i = c k ) ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ \begin{aligned} E\left(u_k\right) & =\frac{\alpha_k}{\sum_{k=1}^K \alpha_k} \\ & =\frac{\lambda+m_k}{\sum_{k=1}^K\left(\lambda+m_k\right)} \\ & =\frac{\lambda+m_k}{\sum_{k=1}^K \lambda+\sum_{k=1}^K m_k} \quad\left(\because \sum_{k=1}^K m_k=N\right) \\ & =\frac{\lambda+m_k}{K \lambda+N}\left(\because m_k=\sum_{i=1}^N I\left(y_i=c_k\right)\right) \\ & =\frac{\sum_{i=1}^N I\left(y_i=c_k\right)+\lambda}{N+K \lambda} \end{aligned} E(uk)=k=1Kαkαk=k=1K(λ+mk)λ+mk=k=1Kλ+k=1Kmkλ+mk(k=1Kmk=N)=Kλ+Nλ+mk(mk=i=1NI(yi=ck))=N+Kλi=1NI(yi=ck)+λ
    随机变量 u k u_k uk u k u_k uk 的期望,可得 P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ P_\lambda\left(Y=c_k\right)=\frac{\sum_{i=1}^N I\left(y_i=c_k\right)+\lambda}{N+K \lambda} Pλ(Y=ck)=N+Kλi=1NI(yi=ck)+λ ,公式(4.11)得证

*×第3步:证明公式(4.10) ⋆ ⋆ { }^{\star \star} ⋆⋆ :
P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ P_\lambda\left(X^{(j)}=a_{j l} \mid Y=c_k\right)=\frac{\sum_{i=1}^N I\left(x_i^{(j)}=a_{j l}, y_i=c_k\right)+\lambda}{\sum_{i=1}^N I\left(y_i=c_k\right)+S_j \lambda} Pλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ
证明思路:

  1. 条件假设: P λ ( X ( j ) = a j l ∣ Y = c k ) = u l P_\lambda\left(X^{(j)}=a_{j l} \mid Y=c_k\right)=u_l Pλ(X(j)=ajlY=ck)=ul ,其中 l = 1 , 2 , … , S j l=1,2, \ldots, S_j l=1,2,,Sj ,且服从参数为 λ \lambda λ 的Dirichlet分布; 出现 x ( j ) = a j l , y = c k x^{(j)}=a_{j l}, y=c_k x(j)=ajl,y=ck 的次数为 m l m_l ml
  2. 得到 u u u 的先验概率 P ( u ) P(u) P(u)
  3. 得到似然函数 P ( m ∣ u ) P(m \mid u) P(mu)
  4. 根据贝叶斯公式,计算后验概率 P ( u ∣ m ) P(u \mid m) P(um)
  5. 计算 u u u 的期望 E ( u ) E(u) E(u)
    证明步骤:
  6. 条件假设
    根据朴素贝叶斯法的基本方法,训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \ldots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)} ,假设:
    (1) 出现 x ( j ) = a j l , y = c k x^{(j)}=a_{j l}, y=c_k x(j)=ajl,y=ck 的次数为 m l m_l ml ,即 m l = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) m_l=\sum_{i=1}^N I\left(x_i^{(j)}=a_{j l}, y_i=c_k\right) ml=i=1NI(xi(j)=ajl,yi=ck) ,可知 ∑ l = 1 S j m l = ∑ i = 1 N I ( y i = c k ) \sum_{l=1}^{S_j} m_l=\sum_{i=1}^N I\left(y_i=c_k\right) l=1Sjml=i=1NI(yi=ck) (总共有 ∑ i = 1 N I ( y i = c k ) \sum_{i=1}^N I\left(y_i=c_k\right) i=1NI(yi=ck) 个);
    (2) P λ ( X ( j ) = a j l ∣ Y = c k ) = u l P_\lambda\left(X^{(j)}=a_{j l} \mid Y=c_k\right)=u_l Pλ(X(j)=ajlY=ck)=ul ,随机变量 u l u_l ul 服从参数为 λ \lambda λ 的Dirichlet分布。
  7. 得到先验概率
    根据假设(2)和Dirichlet分布的定义,可得先验概率为
    P ( u ) = P ( u 1 , u 2 , … , u S j ) = C ( λ ) ∏ l = 1 S j u l λ − 1 P(u)=P\left(u_1, u_2, \ldots, u_{S_j}\right)=C(\lambda) \prod_{l=1}^{S_j} u_l^{\lambda-1} P(u)=P(u1,u2,,uSj)=C(λ)l=1Sjulλ1
  8. 得到似然函数
    m = ( m 1 , m 2 , … , m S j ) T m=\left(m_1, m_2, \ldots, m_{S_j}\right)^T m=(m1,m2,,mSj)T ,可得似然函数为
    P ( m ∣ u ) = u 1 m 1 ⋅ u 2 m 2 ⋯ u S j m S j = ∏ l = 1 S j u l m l P(m \mid u)=u_1^{m_1} \cdot u_2^{m_2} \cdots u_{S_j}^{m_{S_j}}=\prod_{l=1}^{S_j} u_l^{m l} P(mu)=u1m1u2m2uSjmSj=l=1Sjulml
  9. 得到后验概率分布
    结合贝叶斯公式,求 u u u 的后验概率分布,可得
    P ( u ∣ m ) = P ( m ∣ u ) P ( u ) P ( m ) P(u \mid m)=\frac{P(m \mid u) P(u)}{P(m)} P(um)=P(m)P(mu)P(u)
    根据假设(1),可得
    P ( u ∣ m , λ ) ∝ P ( m ∣ u ) P ( u ∣ λ ) ∝ ∏ l = 1 S j u l λ + m l − 1 P(u \mid m, \lambda) \propto P(m \mid u) P(u \mid \lambda) \propto \prod_{l=1}^{S_j} u_l^{\lambda+m_l-1} P(um,λ)P(mu)P(uλ)l=1Sjulλ+ml1
    上式表明,后验概率分布 P ( u ∣ m , λ ) P(u \mid m, \lambda) P(um,λ) 也服从Dirichlet分布
  10. 得到随机变量 u u u 的期望
    根据后验概率分布 P ( u ∣ m , λ ) P(u \mid m, \lambda) P(um,λ) 和假设(1),求随机变量 u u u 的期望,可得
    E ( u k ) = α l ∑ l = 1 S j α l E\left(u_k\right)=\frac{\alpha_l}{\sum_{l=1}^{S_j} \alpha_l} E(uk)=l=1Sjαlαl
    其中 α l = λ + m l \alpha_l=\lambda+m_l αl=λ+ml ,则
    E ( u l ) = α l ∑ l = 1 S j α l = λ + m l ∑ l = 1 S j ( λ + m l ) = λ + m l ∑ l = 1 S j λ + ∑ l = 1 S j m l ( ∵ ∑ l = 1 S j m l = ∑ i = 1 N I ( y i = c k ) ) = λ + m l S j λ + ∑ i = 1 N I ( y i = c k ) ( ∵ m l = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ \begin{aligned} E\left(u_l\right) & =\frac{\alpha_l}{\sum_{l=1}^{S_j} \alpha_l} \\ & =\frac{\lambda+m_l}{\sum_{l=1}^{S_j}\left(\lambda+m_l\right)} \\ = & \frac{\lambda+m_l}{\sum_{l=1}^{S_j} \lambda+\sum_{l=1}^{S_j} m_l} \quad\left(\because \sum_{l=1}^{S_j} m_l=\sum_{i=1}^N I\left(y_i=c_k\right)\right) \\ = & \frac{\lambda+m_l}{S_j \lambda+\sum_{i=1}^N I\left(y_i=c_k\right)} \quad\left(\because m_l=\sum_{i=1}^N I\left(x_i^{(j)}=a_{j l}, y_i=c_k\right)\right) \\ = & \frac{\sum_{i=1}^N I\left(x_i^{(j)}=a_{j l}, y_i=c_k\right)+\lambda}{\sum_{i=1}^N I\left(y_i=c_k\right)+S_j \lambda} \end{aligned} E(ul)====l=1Sjαlαl=l=1Sj(λ+ml)λ+mll=1Sjλ+l=1Sjmlλ+ml l=1Sjml=i=1NI(yi=ck) Sjλ+i=1NI(yi=ck)λ+ml(ml=i=1NI(xi(j)=ajl,yi=ck))i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ
    随机变量 u k u_k uk u k u_k uk 的期望,可得 P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ P_\lambda\left(X^{(j)}=a_{j l} \mid Y=c_k\right)=\frac{\sum_{i=1}^N I\left(x_i^{(j)}=a_{j l}, y_i=c_k\right)+\lambda}{\sum_{i=1}^N I\left(y_i=c_k\right)+S_j \lambda} Pλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ ,公式(4.10)得证。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
统计学习是计算机及其应用领域的一门重要的学科。本书全面系统地介绍了统计学习的主要方,特别是监督学习方,包括感知机、k近邻朴素贝叶斯、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方、em算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。 《统计学习方》是统计学习及相关课程的教学参考书,适用于高等院校文本数据挖掘、信息检索及自然语言处理等专业的大学生、研究生,也可供从事计算机应用相关专业的研发人员参考。 《统计学习方》 第1章统计学习方概论 1.1统计学习 1.2监督学习 1.2.1基本概念 1.2.2问题的形式化 1.3统计学习三要素 1.3.1模型 1.3.2策略 1.3.3算法 1.4模型评估与模型选择 1.4.1训练误差与测试误差 1.4.2过拟合与模型选择 1.5i~则化与交叉验证 1.5.1正则化 1.5.2交叉验证 1.6泛化能力 1.6.1泛化误差 1.6.2泛化误差上界 1.7生成模型与判别模型 .1.8分类问题 1.9标注问题 1.10回归问题 本章概要 继续阅读 习题 参考文献 第2章感知机 2.1感知机模型 2.2感知机学习策略 2.2.1数据集的线性可分性 2.2.2感知机学习策略 2.3感知机学习算法 2.3.1感知机学习算法的原始形式 2.3.2算法的收敛性 2.3.3感知机学习算法的对偶形式 本章概要 继续阅读 习题 参考文献 第3章众近邻 3.1 k近邻算法 3.2 k近邻模型 3.2.1模型 3.2.2距离度量 ·3.2.3 k值的选择 3.2.4分类决策规则 3.3k近邻的实现:kd树 3.3.1构造af树 3.3.2搜索af树 本章概要 继续阅读 习题 参考文献 第4章朴素贝叶斯 4.1朴素贝叶斯的学习与分类 4.1.1基本方 4.1.2后验概率最大化的含义 4.2朴素贝叶斯的参数估计 4.2.1极大似然估计 4.2.2学习与分类算法 4.2.3贝叶斯估计 本章概要 继续阅读 习题 参考文献 第5章决策树 5.1决策树模型与学习 5.1.1决策树模型 5.1.2决策树与isthen规则 5.1.3决策树与条件概率分布 5.1.4决策树学习 5.2特征选择 5.2.1特征选择问题 5.2.2信息增益 5.2.3信息增益比 5.3决策树的生成 5.3.11d3算法 5.3.2 c4.5的生成算法 5.4决策树的剪枝 5.5cart算法 5.5.1cart生成 5.5.2cart剪枝 本章概要 继续阅读 习题 参考文献 第6章逻辑斯谛回归与最大熵模型 6.1逻辑斯谛回归模型 6.1.1逻辑斯谛分布 6.1.2项逻辑斯谛回归模型 6.1.3模型参数估计 6.1.4多项逻辑斯谛回归 6.2最大熵模型 6.2.1最大熵原理 6.2.2最大熵模型的定义 6.2.3最大熵模型的学习 6.2.4极大似然估计 6.3模型学习的最优化算法 6.3.1改进的迭代尺度 6.3.2拟牛顿 本章概要 继续阅读 习题 参考文献 第7章支持向量机 7.1线性可分支持向量机与硬间隔最大化 7.1.1线性可分支持向量机 7.1.2函数间隔和几何间隔 7.1.3间隔最大化 7.1.4学习的对偶算法 7.2线性支持向量机与软间隔最大化 7.2.1线性支持向量机 7.2.2学习的对偶算法 7.2.3支持向量 7.2.4合页损失函数 7.3非线性支持向量机与核函数 7.3.1核技巧 7.3.2定核 7.3.3常用核函数 7.3.4非线性支持向量分类机 7.4序列最小最优化算法 7.4.1两个变量二次规划的求解方 7.4.2变量的选择方 7.4.3smo算法 本章概要 继续阅读 习题 参考文献 第8章提升方 8.1提升方adaboost算法 8.1.1提升方的基本思路 8.1.2adaboost算法 8.1.3 adaboost的例子 8.2adaboost算法的训练误差分析 8.3 adaboost算法的解释 8.3.1前向分步算法 8.3.2前向分步算法与ad9boost 8.4提升树 8.4.1提升树模型 8.4.2提升树算法 8.4.3梯度提升 本章概要 继续阅读 习题 参考文献 第9章em算法及其推广 9.1em算法的引入 9.1.1em算法 9.1.2em算法的导出 9.1.3em算法在非监督学习中的应用 9.2em算法的收敛性 9.3em算法在高斯混合模型学习中的应用 9.3.1高斯混合模型 9.3.2高斯混合模型参数估计的em算法 9.4em算法的推广 9.4.1f函数的极大极大算法 9.4.2gem算法 本章概要 继续阅读 习题 参考文献 第10章隐马尔可夫模型 10.1隐马尔可夫模型的基本概念 10.1.1隐马尔可夫模型的定义 10.1.2观测序列的生成过程 10.1.3隐马尔可夫模型的3个基本问题 10.2概率计算算法 10.2.1直接计算法 10.2.2前向算法 10.2.3后向算法 10.2.4一些概率与期望值的计算 10.3学习算法 10.3.1监督学习方 10.3.2baum-welch算法 10.3.3baum-welch模型参数估计公式 10.4预测算法 10.4.1近似算法 10.4.2维特比算法 本章概要 继续阅读 习题 参考文献 第11章条件随机场 11.1概率无向图模型 11.1.1模型定义 11.1.2概率无向图模型的因子分解 11.2条件随机场的定义与形式 11.2.1条件随机场的定义 11.2.2条件随机场的参数化形式 11.2.3条件随机场的简化形式 11.2.4条件随机场的矩阵形式 11.3条件随机场的概率计算问题 11.3.1前向后向算法 11.3.2概率计算 11.3.3期望值的计算 11.4条件随机场的学习算法 11.4.1改进的迭代尺度 11.4.2拟牛顿 11.5条件随机场的预测算法 本章概要 继续阅读 习题 参考文献 第12章统计学习方总结 附录a梯度下降 附录b牛顿和拟牛顿 附录c拉格朗日对偶性
sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘 1.1.1.1. 普通最小二乘复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络 1.1.6. 多任务弹性网络 1.1.7. 最小角回归 1.1.8. LARS Lasso 1.1.8.1. 数学表达式 1.1.9. 正交匹配追踪(OMP) 1.1.10. 贝叶斯回归 1.1.10.1. 贝叶斯岭回归 1.1.10.2. 主动相关决策理论 - ARD 1.1.11. logistic 回归 1.1.12. 随机梯度下降, SGD 1.1.13. Perceptron(感知器) 1.1.14. Passive Aggressive Algorithms(被动攻击算法) 1.1.15. 稳健回归(Robustness regression): 处理离群点 (outliers)和模型错误 1.1.15.1. 各种使用场景与相关概念 1.1.15.2. RANSAC: 随机抽样一致性算法(RANdom SAmple Consensus) 1.1.15.2.1. 算法细节 1.1.15.3. Theil-Sen 预估器: 广义中值估计 1.1.15.3.1. 算法理论细节 1.1.15.4. Huber 回归 1.1.15.5. 注意 1.1.16. 多项式回归:用基函数展开线性模型 1.2. 线性和二次判别分析 1.2.1. 使用线性判别分析来降维 1.2.2. LDA 和 QDA 分类器的数学公式 1.2.3. LDA 的降维数学公式 1.2.4. Shrinkage(收缩) 1.2.5. 预估算法 1.3. 内核岭回归 1.4. 支持向量机 1.4.1. 分类 1.4.1.1. 多元分类 1.4.1.2. 得分和概率 1.4.1.3. 非均衡问题 1.4.2. 回归 1.4.3. 密度估计, 异常(novelty)检测 1.4.4. 复杂度 1.4.5. 使用诀窍 1.4.6. 核函数 1.4.6.1. 自定义核 1.4.6.1.1. 使用 python 函数作为内核 1.4.6.1.2. 使用 Gram 矩阵 1.4.6.1.3. RBF 内核参数 1.4.7. 数学公式 1.4.7.1. SVC 1.4.7.2. NuSVC 1.4.7.3. SVR 1.4.8. 实现细节 1.5. 随机梯度下降 1.5.1. 分类 1.5.2. 回归 1.5.3. 稀疏数据的随机梯度下降 1.5.4. 复杂度 1.5.5. 实用小贴士 1.5.6. 数学描述 1.5.6.1. SGD 1.5.7. 实现细节 1.6. 最近邻 1.6.1. 无监督最近邻 1.6.1.1. 找到最近邻 1.6.1.2. KDTree 和 BallTree 类 1.6.2. 最近邻分类 1.6.3. 最近邻回归 1.6.4. 最近邻算法 1.6.4.1. 暴力计算 1.6.4.2. K-D 树 1.6.4.3. Ball 树 1.6.4.4. 最近邻算法的选择 1.6.4.5. leaf_size 的影响 1.6.5. 最近质心分类 1.6.5.1. 最近缩小质心 1.7. 高斯过程 1.7.1. 高斯过程回归(GPR) 1.7.2. GPR 示例 1.7.2.1. 具有噪声级的 GPR 估计 1.7.2.2. GPR 和内核岭回归(Kernel Ridge Regression)的比 较 1.7.2.3. Mauna Loa CO2 数据中的 GRR 1.7.3. 高斯过程分类(GPC) 1.7.4. GPC 示例 1.7.4.1. GPC 概率预测 1.7.4.2. GPC 在 XOR 数据集上的举例说明 1.7.4.3. iris 数据集上的高斯过程分类(GPC) 1.7.5. 高斯过程内核 1.7.5.1. 高斯过程内核 API 1.7.5.2. 基础内核 1.7.5.3. 内核操作 1.7.5.4. 径向基函数内核 1.7.5.5. Matérn 内核 1.7.5.6. 有理二次内核 1.7.5.7. 正弦平方内核 1.7.5.8. 点乘内核 1.7.5.9. 参考文献 1.7.6. 传统高斯过程 1.7.6.1. 回归实例介绍 1.7.6.2. 噪声数据拟合 1.7.6.3. 数学形式 1.7.6.3.1. 初始假设 1.7.6.3.2

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值