【AI知识点】召回率、精确率、准确率、F1-score和混淆矩阵

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


召回率、精确率、准确率、F1-score和混淆矩阵,这些是评估一个分类模型性能的常用指标,我们可以通过一个简单的二分类问题来说明它们的区别。这个例子是关于邮件垃圾分类的场景,假设我们要训练一个分类器来区分电子邮件是否是垃圾邮件。

假设的分类结果:

  • 总共分类了 100 封邮件。
  • 其中,实际垃圾邮件有 20 封,非垃圾邮件有 80 封。
  • 下面这个混淆矩阵(Confusion Matrix) 展示了分类模型的四种预测结果:
实际垃圾邮件 (Positive) 实际非垃圾邮件 (Negative)
预测为垃圾邮件 15 (TP) 10 (FP)
预测为非垃圾邮件 5 (FN) 70 (TN)

定义这些术语

  • 真正类(TP):模型正确预测为垃圾邮件的邮件数。这里是 15 封。(阳性
  • 假正类(FP):模型错误地将非垃圾邮件预测为垃圾邮件的邮件数。这里是 10 封。(假阳性,误报,误诊
  • 假负类(FN):模型错误地将垃圾邮件预测为非垃圾邮件的邮件数。这里是 5 封。(假阴性,漏报,漏诊
  • 真负类(TN):模型正确预测为非垃圾邮件的邮件数。这里是 70 封。(阴性

各个指标的计算

1. 召回率(Recall)

  • 召回率衡量的是有多少真正的垃圾邮件被模型识别出来:
    Recall = TP TP + FN = 15 15 + 5 = 0.75 \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{15}{15 + 5} = 0.75 Recall=TP+FNTP=<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值