VOC数据集

本文主要介绍了VOC数据集在目标检测和分割任务中的应用。VOC数据集包含多个类别的物体标注,用于Detection和Segmentation任务。VOC2007和VOC2012分别在训练、验证和测试集上提供了不同数量的标注图像。在检测任务中,评估指标基于mean average precision(mAP)。在分割任务中,评估包括像素级别的精度。
摘要由CSDN通过智能技术生成

Challenge and tasks

给定自然图片, 从中识别出特定物体。
待识别的物体有20类:

  • person bird, cat, cow, dog, horse, sheep
  • aeroplane, bicycle, boat, bus, car, motorbike, train
  • bottle, chair, dining table, potted plant,sofa, tv/monitor

有以下几个task:

  • Classification(略过)
  • Detection: 将图片中所有的目标用bounding box(bbox)框出来
  • Segmentation: 将图片中所有的目标分割出来
  • Person Layout(略过)

接下来本文只介绍Detection与Segmentation相关的内容。

Dataset

  • 所有的标注图片都有Detection需要的label, 但只有部分数据有Segmentation Label。
  • VOC2007中包含9963张标注过的图片, 由train/val/test三部分组成, 共标注出24,640个物体。
  • VOC2007的test数据label已经公布, 之后的没有公布(只有图片,没有label)。
  • 对于检测任务,VOC2012的trainval/test包含08-11年的所有对应图片。 trainval有11540张图片共27450个物体。
  • 对于分割任务, VOC2012的trainval包含07-11年的所有对应图片, test只包含08-11。trainval有 2913张图片共6929个物体。

Detection Ground Truth and Evaluation

Ground truth

<annotation>
    <folder>VOC2007</folder>
    <filename>009961.jpg</filename>
    <source>
        <database>The VOC2007 Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
        <flickrid>334575803</flickrid>
    
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值