python statsmodel 回归结果提取(R方 T值 P-value)

本文详细介绍了Python的statsmodel库如何进行线性回归分析,并展示了如何提取回归模型的关键指标,如系数、标准误、P值、R方等。此外,还探讨了异方差性处理和模型评估,提供了代码示例和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前曾在CSDN chongminglun 这个账号上发过一篇python statsmodel 回归结果提取的文章,现在在知乎重发一篇完整版,含代码和示例结果展示,并回答一些疑问

数据说明

波士顿房价数据集: sklearn包中的示例数据集 boston

from sklearn import datasets
import pandas as pd
import statsmodels.api as sm

### 获取数据集
boston = datasets.load_boston()
### 提取自变量
X = pd.DataFrame(boston.data, columns = boston.feature_names)
### 提取因变量
y =  pd.DataFrame(boston.target)
### 展示自变量
X.head()
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT

模型训练及结果总体展示

### 自变量增加截距项
X = sm.add_constant(X)

# 模型训练
model = sm.OLS(y, X).fit()
# 查看模型结果
print(model.summary())

OLS Regression Results                            
==============================================================================
Dep. Variable:                      0   R-squared:                       0.741
Model:                            OLS   Adj. R-squared:                  0.734
Method:                 Least Squares   F-statistic:                     108.1
Date:                Mon, 12 Jul 2021   Prob (F-statistic):          6.72e-135
Time:                        15:48:48   Log-Likelihood:                -1498.8
No. Observations:                 506   AIC:                             3026.
Df Residuals:                     492   BIC:                             3085.
Df Model:                          13                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         36.4595      5.103      7.144      0.000      26.432      46.487
CRIM          -0.1080      0.033     -3.287      0.001      -0.173      -0.043
ZN             0.0464      0.014      3.382      0.001       0.019       0.073
INDUS          0.0206      0.061      0.334      0.738      -0.100       0.141
CHAS           2.6867      0.862      3.118      0.002       0.994       4.380
NOX          -17.7666      3.820     -4.651      0.000     -25.272     -10.262
RM             3.8099      0.418      9.116      0.000       2.989       4.631
AGE            0.0007      0.013      0.052      0.958      -0.025       0.027
DIS           -1.4756      0.199     -7.398      0.000      -1.867      -1.084
RAD            0.3060      0.066      4.613      0.000       0.176       0.436
TAX           -0.0123      0.004     -3.280      0.001      -0.020      -0.005
PTRATIO       -0.9527      0.131     -7.283      0.000      -1.210      -0.696
B              0.0093      0.003      3.467      0.001       0.004       0.015
LSTAT         -0.5248      0.051    -10.347      0.000      -0.624      -0.425
==============================================================================
Omnibus:                      178.041   Durbin-Watson:                   1.078
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              783.126
Skew:                           1.521   Prob(JB):                    8.84e-171
Kurtosis:                       8.281   Cond. No.                     1.51e+04
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.51e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

上述结果中coef列表示回归系数,const表示截距,所以回归公式应该为:

我们可以使用其中某个显著的自变量话模型残差相关绘图

import matplotlib.pyplot as plt   #绘图
import seaborn as sns  #绘图
sns.set()
import warnings # 忽略warning
warnings.filterwarnings("ignore")

# 回归模型检验 针对CRIM变量
fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model,"CRIM", fig =fig)

接下来是具体指标提取

提取元素-回归系数类

# 提取回归系数
model.params

const      36.459488
CRIM       -0.108011
ZN          0.046420
INDUS       0.020559
CHAS        2.686734
NOX       -17.766611
RM          3.809865
AGE         0.000692
DIS        -1.475567
RAD         0.306049
TAX        -0.012335
PTRATIO    -0.952747
B           0.009312
LSTAT      -0.524758
dtype: float64
# 提取回归系数标准差
model.bse

const      5.103459
CRIM       0.032865
ZN         0.013727
INDUS      0.061496
CHAS       0.861580
NOX        3.819744
RM         0.417925
AGE        0.013210
DIS        0.199455
RAD        0.066346
TAX        0.003761
PTRATIO    0.130827
B          0.002686
LSTAT      0.050715
dtype: float64
# 提取回归系数p值
model.pvalues

const      3.283438e-12
CRIM       1.086810e-03
ZN         7.781097e-04
INDUS      7.382881e-01
CHAS       1.925030e-03
NOX        4.245644e-06
RM         1.979441e-18
AGE        9.582293e-01
DIS        6.013491e-13
RAD        5.070529e-06
TAX        1.111637e-03
PTRATIO    1.308835e-12
B          5.728592e-04
LSTAT      7.776912e-23
dtype: float64

# 提取回归系数t值
model.tvalues

const       7.144074
CRIM       -3.286517
ZN          3.381576
INDUS       0.334310
CHAS        3.118381
NOX        -4.651257
RM          9.116140
AGE         0.052402
DIS        -7.398004
RAD         4.612900
TAX        -3.280009
PTRATIO    -7.282511
B           3.466793
LSTAT     -10.347146
dtype: float64
# 提取回归系数置信区间 默认5%,括号中可填具体数字 比如0.05, 0.1
model.conf_int()

# 回归系数表汇总提取
coef_df = pd.DataFrame({"params": model.params,   # 回归系数
                        "std err": model.bse,     # 回归系数标准差
                        "t": round(model.tvalues,3),       # 回归系数T值
                        "p-values": round(model.pvalues,3) # 回归系数P值
                         })

coef_df[['coef_0.025','coef_0.975']] = model.conf_int() # 回归系数置信区间 默认5%,括号中可填具体数字 比如0.05, 0.1
coef_df

模型总体数据类

# 提取模型预测值
model.fittedvalues

0      30.003843
1      25.025562
2      30.567597
3      28.607036
4      27.943524
         ...    
501    23.533341
502    22.375719
503    27.627426
504    26.127967
505    22.344212
Length: 506, dtype: float64

# 提取残差
model.resid

0      -6.003843
1      -3.425562
2       4.132403
3       4.792964
4       8.256476
         ...    
501    -1.133341
502    -1.775719
503    -3.727426
504    -4.127967
505   -10.444212
Length: 506, dtype: float64

# pearson残差
model.resid_pearson


array([-1.26521941e+00, -7.21885590e-01,  8.70841646e-01,  1.01004475e+00,
        1.73992770e+00,  7.25711095e-01, -2.14545566e-02,  1.59400132e+00,
        1.04869346e+00, -4.26993337e-03, -8.42833550e-01, -5.66201654e-01,
        1.67213617e-01,  1.78512953e-01, -2.28327496e-01,  1.26971324e-01,
        5.42113501e-01,  1.24038286e-01,  8.47573491e-01, -4.34400591e-02,
        2.26780791e-01,  4.06499914e-01, -1.33370184e-01,  1.46189897e-01,
       -1.65086181e-02,  1.08173264e-01,  2.39399804e-01,  1.92876645e-02,
       -2.41791518e-01,  2.60408921e-02,  2.62340187e-01, -7.50054646e-01,
        9.24903445e-01, -2.49248434e-01, -4.35713215e-02, -1.03568524e+00,
       -4.93527906e-01, -4.44421266e-01,  3.76156316e-01, -1.17511201e-01,
        1.44331867e-01, -2.99362460e-01,  2.02587310e-02,  1.90098222e-02,
       -3.66993114e-01, -5.89361947e-01, -8.91830833e-02, -3.02731426e-01,
        1.11551393e+00,  4.62336064e-01, -3.33282608e-01, -7.31718580e-01,
       -5.59680488e-01, -1.36770771e-01,  7.45612217e-01,  8.95065046e-01,
       -3.30579398e-02, -3.18040722e-01,  3.21290690e-01, -3.12927764e-01,
        1.74366198e-01, -5.29176879e-01, -3.76673603e-01,  5.15438908e-01,
        2.02872679e+00, -1.44595415e+00, -1.29192411e+00,  1.86840600e-01,
       -4.53877833e-03,  2.42690067e-02, -2.11048612e-01, -8.98946766e-03,
       -3.70355983e-01, -1.35493513e-01, -2.96081955e-01, -5.40941813e-01,
       -6.20709999e-01, -5.38848790e-01, -1.30619110e-02, -4.48480506e-01,
       -8.55098387e-02, -6.52195235e-01, -2.60418402e-01, -4.54920795e-01,
       -1.86409095e-01, -2.50878218e-01,  6.98514099e-02, -7.78194333e-01,
       -1.49086907e+00, -4.49098486e-01, -9.52315160e-01, -1.14063798e+00,
       -1.27309758e+00, -8.60020868e-01, -1.35708514e+00, -4.73309530e-02,
       -7.01209840e-01,  6.15009786e-01,  1.83032842e+00,  1.99981529e-01,
        6.15299545e-01,  1.90897436e-01, -2.50803383e-01, -2.13194461e-01,
       -2.81294422e-01,  2.02318143e-01,  4.87311860e-01, -7.38605344e-02,
       -6.00234387e-01, -7.84011207e-02,  2.21343595e-01, -7.85170351e-01,
       -4.15829796e-01, -4.24732666e-01, -1.40604206e+00, -4.48919294e-01,
       -4.58821801e-01, -9.46290925e-01,  1.35326285e-02, -3.14376184e-01,
        1.76341478e-02, -4.57521885e-01, -1.20931407e-02,  1.96695801e-01,
       -3.71103801e-01, -2.27969755e-01,  2.28211933e-01,  2.15209481e-01,
       -1.97813897e-01,  5.14756164e-02, -1.76021392e-01,  4.00113906e-02,
        6.19156948e-01,  5.56745470e-01,  4.93867304e-01,  1.76432042e-01,
        3.20650275e-01, -4.76606412e-01, -1.08494545e-01,  2.84741907e-01,
        9.03169126e-02,  2.19399172e+00, -2.51818692e-01,  7.27285213e-01,
        6.47330528e-01,  3.71767275e-01, -4.65346057e-02,  1.28232401e+00,
        1.70306655e+00,  1.25489746e-01,  1.39383964e-01,  2.73742188e-01,
       -1.01633773e+00,  4.45489616e-01, -1.13080402e+00, -9.49099309e-01,
       -1.09847450e-01,  1.69434517e+00, -9.96812529e-01, -4.77847251e-01,
       -1.20293319e+00,  2.78703874e+00,  1.98983103e+00,  1.71806239e+00,
       -4.40156490e-01, -7.98458523e-02,  2.69667468e+00,  1.50151265e-01,
       -5.48488093e-01, -9.17502119e-01, -1.08636937e+00, -1.09388871e+00,
        2.60105488e-02, -1.15312945e+00, -8.26490401e-01, -2.78610638e-01,
       -5.09281604e-01, -9.56190659e-01, -3.23629753e-01,  9.01457433e-01,
        1.06960515e+00,  1.77743918e+00,  8.45495190e-01,  3.17708094e-01,
        7.75883786e-01,  1.01859182e+00,  2.97452914e+00, -3.00248196e-01,
       -5.50437795e-01,  8.11119748e-02,  1.31475513e+00,  4.43931203e-02,
        7.33528795e-01, -2.13391799e-01, -5.18136047e-01,  1.92916071e+00,
       -5.95895281e-01, -4.99274863e-01, -2.20620834e-02,  1.01290756e+00,
        4.75430805e-01, -1.09312309e+00,  1.10183088e+00,  1.36304791e+00,
        1.43521046e+00, -1.90394703e-02,  1.51129151e-01,  9.78974911e-01,
        1.90864735e-01,  6.30966213e-01, -1.45936238e-01,  4.71956108e-01,
       -7.14242187e-02,  6.07037609e-01,  2.65122067e+00,  1.03156536e-01,
       -6.96130701e-01,  7.26641108e-02, -7.19713389e-01, -1.40908483e+00,
       -1.36644679e+00, -4.37183604e-01, -9.77919490e-01,  7.46381135e-02,
        1.35480959e+00,  2.14641545e+00,  2.93816106e-03, -1.68489412e-01,
        2.36936588e+00,  5.60312277e-02, -3.88789623e-02, -3.34725628e-01,
        7.69581817e-01,  2.34689439e+00, -5.71899830e-01, -2.67012876e-01,
       -1.05369721e+00, -2.57069527e-01, -9.96179878e-01, -1.08094509e+00,
       -1.11557992e+00, -7.67628217e-01, -4.04627662e-01, -7.80158379e-01,
        2.67933510e-01,  1.07497721e+00,  9.02706655e-01,  1.34481691e-01,
        6.76814560e-01,  4.46780881e-01,  4.08118779e-02, -5.10311900e-02,
        9.86315243e-01,  2.70886376e+00, -4.36702413e-01, -1.67704712e-01,
        1.36743938e+00,  1.41142017e+00, -1.01914398e-01, -1.03046969e+00,
       -2.13287984e-01,  1.25043495e+00,  1.64599034e+00, -7.26264349e-01,
        1.40354622e-01, -1.14760818e+00, -1.11001650e-01,  1.93042506e+00,
        8.81309437e-01, -1.05539818e+00, -2.53504687e-01, -4.22188373e-01,
       -8.66477630e-01, -5.83242552e-02, -7.81066121e-01, -3.78623780e-01,
       -5.08052073e-01, -3.66664802e-01, -2.63824634e-01, -4.42136619e-02,
        1.39136258e+00,  2.25226761e-01,  1.19283742e+00,  1.12256731e+00,
        1.27096153e-01, -1.12882101e+00, -3.67003493e-04, -8.09657600e-01,
       -1.03547672e+00, -4.45484838e-01, -1.04011021e+00,  6.10394449e-01,
       -8.28904328e-01, -4.04154238e-01, -5.75269115e-01,  2.99995124e-02,
       -5.53537365e-02,  1.60308666e-01, -1.39361073e+00, -6.13353681e-01,
       -1.25842344e+00, -1.46308165e+00, -5.23025135e-01,  6.34581158e-02,
        6.09223136e-01, -4.99087272e-01, -4.55665479e-01, -9.50214521e-01,
       -1.23120658e+00, -6.93245850e-01, -5.14755633e-01, -1.00708075e+00,
       -8.17933803e-01, -8.31518339e-01, -3.54287656e-01, -9.14399653e-01,
        3.88330226e-02,  3.00125109e-01, -2.50922645e-01, -6.85500424e-02,
       -2.29031433e-01, -3.72868627e-01, -5.20415026e-01, -2.00459037e-01,
       -2.48317401e-02, -1.43023957e-02, -1.43460273e-01,  6.02512999e-01,
       -3.94955382e-01, -3.48237491e-01, -3.77765289e-01, -6.07857703e-01,
       -8.30059534e-01,  1.25161945e-02, -1.80199275e-01,  1.01420588e-01,
       -1.39289827e-01, -1.65406649e-01, -3.30163278e-01, -4.74081429e-01,
       -5.75178408e-01,  4.99886825e-01, -1.16902027e+00, -8.02158048e-01,
        5.58881387e-01,  2.01249479e-01,  5.09220601e-01, -4.58095726e-01,
       -6.41066390e-01,  9.38112676e-01,  5.14311000e-01,  7.48940454e-01,
        3.62329546e-01,  9.89919866e-01,  8.16625960e-01,  8.44017642e-01,
       -3.87129922e-01, -2.14542066e-01,  1.04906186e-01,  7.15343756e-01,
        4.91821348e-01,  2.04006952e-01,  5.41911564e-01, -7.23138564e-01,
       -3.28630010e+00,  2.78551361e+00,  1.33967082e+00,  2.58537531e+00,
        5.52110109e+00,  3.65749964e+00,  3.24387615e+00,  5.28031869e+00,
        5.05767814e+00,  1.61711124e+00,  2.74423259e+00, -2.17207228e+00,
       -8.09350751e-01, -1.46097123e+00, -5.76004479e-01, -1.39825267e+00,
       -8.36606701e-01, -1.59670226e+00, -4.48377051e-01, -1.60532613e-01,
        1.16342928e+00, -1.81278747e-01,  9.21244118e-01,  3.75393038e-01,
        7.89837468e-01, -5.70595829e-01, -4.45125206e-01,  1.24357356e+00,
       -4.02854415e-02, -1.35317986e+00, -1.10463274e+00, -1.51823079e+00,
       -1.43206823e+00, -1.65138786e+00, -3.26981178e-01, -9.67308608e-01,
       -1.32372265e+00, -2.23626517e+00, -1.29839383e+00, -9.86131456e-01,
        2.36410095e-01, -6.76703231e-01,  8.07902459e-01,  1.66839929e+00,
        7.35978262e-01,  1.61155636e+00, -4.70113717e-02,  5.04246901e-02,
        3.41000319e+00,  9.47088245e-01,  2.37736603e+00, -5.02343009e-01,
       -1.23629915e+00,  7.38494451e-01,  5.58911448e-01, -1.30795109e+00,
       -6.11136875e-01, -8.26981700e-01,  4.80102323e-01,  4.73550632e-02,
       -6.16647496e-01, -3.42180765e-01, -1.29515707e+00, -6.69124285e-01,
       -6.86482135e-01, -7.46496372e-01, -7.71196412e-01, -9.68441469e-01,
       -1.14371801e+00, -5.75605263e-01, -8.97921309e-01,  8.13097332e-03,
       -1.03698306e+00, -2.52376246e-02,  7.44418758e-01, -5.60371802e-02,
       -4.64901658e-01, -4.12156591e-02, -7.17520772e-02, -5.60346303e-01,
       -1.50622112e-01, -3.66686307e-02, -5.86569290e-01, -1.16472183e+00,
       -7.20364953e-01, -8.90866055e-01, -6.58065351e-01, -8.87807423e-01,
       -5.23076162e-01, -9.88230397e-01, -8.00795473e-02, -3.62652311e-01,
        2.68564511e-03,  1.31427378e-01, -4.81884430e-01,  3.13473221e-01,
       -5.58153615e-01, -5.20955518e-01, -5.77567913e-02, -4.69814033e-01,
        2.27779460e-01,  4.24385864e-01,  9.74694233e-01,  4.53550317e-01,
        4.45902933e-01,  3.18550273e-01, -5.63071909e-02, -7.11689801e-01,
        1.56827392e-01,  8.89670906e-01, -5.46114536e-01, -5.92473370e-01,
       -8.08129616e-01,  9.63633055e-02, -9.70426487e-01, -9.75205116e-02,
       -9.87901382e-02, -7.16261239e-01, -7.52311631e-01,  1.50888762e-01,
        2.41257346e-01, -2.15425691e-01, -1.17151670e-01, -1.52858897e-01,
        7.04731864e-01, -2.57911478e-01,  9.34820766e-01, -3.35248442e-02,
        8.78514772e-01,  2.47272018e-01,  8.19233210e-01,  1.30962905e+00,
        1.19840565e+00, -1.70387910e-01, -2.06629258e-02, -2.01249399e-01,
       -7.73124961e-01, -2.38834422e-01, -3.74205972e-01, -7.85498814e-01,
       -8.69906726e-01, -2.20096017e+00])

# 模型系数特征根
model.eigenvals
array([1.58387279e+08, 1.18747467e+07, 4.17002361e+05, 1.61646715e+05,
       2.52698040e+04, 1.47636812e+04, 8.18419000e+03, 6.07824057e+03,
       4.23776822e+03, 6.06464350e+02, 3.29009355e+02, 3.04181386e+01,
       2.71710279e+00, 6.93408540e-01])


# 模型自由度(系数自由度)
model.df_model
13.0


# 残差自由度(样本自由度)
model.df_resid
492.0


# 模型样本数量
model.nobs
506.0

模型评价类

# R方
model.rsquared
0.7406426641094094


# 调整R方
model.rsquared_adj
0.7337897263724629


# AIC
model.aic
3025.608594075548


# 提取BIC
model.bic
3084.7801074455724


# 提取F-statistic
model.fvalue
108.0766661743262


# 提取F-statistic 的pvalue
model.f_pvalue
6.722174750114747e-135


# 模型mse
model.mse_model
2433.654679774215


# 残差mse
model.mse_resid
22.517854833241827


# 总体mse
model.mse_total
84.58672359409856


# 模型SSR
model.ssr
11078.784577954979


# 最大似然值
model.llf
-1498.804297037774

计量经济学指标

主要包括white稳健标准误和异方差等

# 协方差矩阵比例因子
model.scale
22.517854833241827


#  White异方差稳健标准误
model.HC0_se
const      7.889557
CRIM       0.028541
ZN         0.013574
INDUS      0.049678
CHAS       1.275810
NOX        3.733026
RM         0.833130
AGE        0.016235
DIS        0.211718
RAD        0.060580
TAX        0.002653
PTRATIO    0.115804
B          0.002641
LSTAT      0.098262
dtype: float64


# MacKinnon和White(1985)的异方差稳健标准误
model.HC1_se
const      8.001020
CRIM       0.028944
ZN         0.013765
INDUS      0.050380
CHAS       1.293834
NOX        3.785766
RM         0.844900
AGE        0.016464
DIS        0.214709
RAD        0.061436
TAX        0.002691
PTRATIO    0.117440
B          0.002679
LSTAT      0.099650
dtype: float64


#  White异方差矩阵
model.cov_HC0
array([[ 6.22451170e+01, -4.05837192e-02,  4.66213977e-02,
        -2.02608278e-02, -5.16908156e-01, -1.84963497e+01,
        -5.92308790e+00,  6.49468377e-02, -9.04271785e-01,
         2.48754354e-01, -3.17889895e-03, -4.33848652e-01,
        -8.06514578e-03, -4.55830059e-01],
       [-4.05837192e-02,  8.14575028e-04, -7.30467495e-05,
         7.68196041e-05, -1.48005320e-04,  1.08132391e-02,
         4.53386408e-03, -3.19647054e-05,  1.35870378e-03,
        -6.37552526e-04,  2.86982066e-06, -4.57267662e-05,
         3.83565001e-06,  3.45785790e-04],
       [ 4.66213977e-02, -7.30467495e-05,  1.84244584e-04,
         2.61234126e-06,  6.03717812e-04, -1.21706740e-02,
        -5.73718237e-03,  5.87974087e-05, -1.62801330e-03,
         3.18341130e-04, -8.35890471e-06,  1.73821267e-04,
        -1.50295327e-06, -4.28123907e-04],
       [-2.02608278e-02,  7.68196041e-05,  2.61234126e-06,
         2.46794590e-03, -2.98284972e-03, -4.43042501e-02,
         5.40243883e-03,  1.28039193e-04,  2.81174900e-03,
         1.16918247e-04, -2.04184173e-05, -1.23180596e-03,
         5.49048862e-06, -6.26102272e-04],
       [-5.16908156e-01, -1.48005320e-04,  6.03717812e-04,
        -2.98284972e-03,  1.62769029e+00, -2.50863874e-01,
        -2.60459059e-02,  4.90596013e-04, -1.41767569e-02,
        -1.10240540e-03,  9.93743845e-04,  3.67078932e-02,
        -2.60236135e-05, -1.98981785e-02],
       [-1.84963497e+01,  1.08132391e-02, -1.21706740e-02,
        -4.43042501e-02, -2.50863874e-01,  1.39354837e+01,
         1.19367217e+00, -2.85013691e-02,  3.37144580e-01,
        -8.29792499e-02, -2.22770278e-04,  1.70057224e-01,
         2.54063758e-03,  9.39816822e-02],
       [-5.92308790e+00,  4.53386408e-03, -5.73718237e-03,
         5.40243883e-03, -2.60459059e-02,  1.19367217e+00,
         6.94104919e-01, -7.54495425e-03,  7.25867496e-02,
        -2.53401948e-02,  2.23533865e-04,  1.92295864e-02,
         4.91467605e-04,  5.78136563e-02],
       [ 6.49468377e-02, -3.19647054e-05,  5.87974087e-05,
         1.28039193e-04,  4.90596013e-04, -2.85013691e-02,
        -7.54495425e-03,  2.63572686e-04,  6.57956534e-05,
         3.96860769e-04,  5.05955056e-07, -5.01624568e-04,
        -3.26677463e-06, -1.17600486e-03],
       [-9.04271785e-01,  1.35870378e-03, -1.62801330e-03,
         2.81174900e-03, -1.41767569e-02,  3.37144580e-01,
         7.25867496e-02,  6.57956534e-05,  4.48245167e-02,
        -4.22432340e-03,  5.62545500e-05,  2.71758246e-04,
         4.38917701e-05,  4.30040209e-03],
       [ 2.48754354e-01, -6.37552526e-04,  3.18341130e-04,
         1.16918247e-04, -1.10240540e-03, -8.29792499e-02,
        -2.53401948e-02,  3.96860769e-04, -4.22432340e-03,
         3.66989640e-03, -9.63653112e-05, -9.19943656e-04,
         2.61522969e-06, -2.61760546e-03],
       [-3.17889895e-03,  2.86982066e-06, -8.35890471e-06,
        -2.04184173e-05,  9.93743845e-04, -2.22770278e-04,
         2.23533865e-04,  5.05955056e-07,  5.62545500e-05,
        -9.63653112e-05,  7.04077297e-06, -2.24690016e-06,
         5.85050554e-07, -1.51941175e-05],
       [-4.33848652e-01, -4.57267662e-05,  1.73821267e-04,
        -1.23180596e-03,  3.67078932e-02,  1.70057224e-01,
         1.92295864e-02, -5.01624568e-04,  2.71758246e-04,
        -9.19943656e-04, -2.24690016e-06,  1.34106205e-02,
         3.16335314e-05,  6.98263961e-04],
       [-8.06514578e-03,  3.83565001e-06, -1.50295327e-06,
         5.49048862e-06, -2.60236135e-05,  2.54063758e-03,
         4.91467605e-04, -3.26677463e-06,  4.38917701e-05,
         2.61522969e-06,  5.85050554e-07,  3.16335314e-05,
         6.97639154e-06,  2.11772355e-05],
       [-4.55830059e-01,  3.45785790e-04, -4.28123907e-04,
        -6.26102272e-04, -1.98981785e-02,  9.39816822e-02,
         5.78136563e-02, -1.17600486e-03,  4.30040209e-03,
        -2.61760546e-03, -1.51941175e-05,  6.98263961e-04,
         2.11772355e-05,  9.65534634e-03]])


# MacKinnon和White(1985)的异方差矩阵
model.cov_HC1
array([[ 6.40163195e+01, -4.17385405e-02,  4.79480228e-02,
        -2.08373554e-02, -5.31616925e-01, -1.90226686e+01,
        -6.09163105e+00,  6.67949185e-02, -9.30003096e-01,
         2.55832730e-01, -3.26935542e-03, -4.46193939e-01,
        -8.29464179e-03, -4.68800834e-01],
       [-4.17385405e-02,  8.37753993e-04, -7.51253155e-05,
         7.90055278e-05, -1.52216853e-04,  1.11209329e-02,
         4.66287648e-03, -3.28742701e-05,  1.39736609e-03,
        -6.55694264e-04,  2.95148223e-06, -4.70279343e-05,
         3.94479452e-06,  3.55625223e-04],
       [ 4.79480228e-02, -7.51253155e-05,  1.89487316e-04,
         2.68667618e-06,  6.20896774e-04, -1.25169939e-02,
        -5.90043553e-03,  6.04705057e-05, -1.67433888e-03,
         3.27399617e-04, -8.59675973e-06,  1.78767400e-04,
        -1.54572023e-06, -4.40306295e-04],
       [-2.08373554e-02,  7.90055278e-05,  2.68667618e-06,
         2.53817200e-03, -3.06772755e-03, -4.55649401e-02,
         5.55616676e-03,  1.31682585e-04,  2.89175812e-03,
         1.20245189e-04, -2.09994292e-05, -1.26685735e-03,
         5.64672204e-06, -6.43918191e-04],
       [-5.31616925e-01, -1.52216853e-04,  6.20896774e-04,
        -3.06772755e-03,  1.67400668e+00, -2.58002277e-01,
        -2.67870495e-02,  5.04556062e-04, -1.45801606e-02,
        -1.13377466e-03,  1.02202111e-03,  3.77524267e-02,
        -2.67641228e-05, -2.04643869e-02],
       [-1.90226686e+01,  1.11209329e-02, -1.25169939e-02,
        -4.55649401e-02, -2.58002277e-01,  1.43320219e+01,
         1.22763845e+00, -2.93123837e-02,  3.46738125e-01,
        -8.53404481e-02, -2.29109270e-04,  1.74896251e-01,
         2.61293215e-03,  9.66559577e-02],
       [-6.09163105e+00,  4.66287648e-03, -5.90043553e-03,
         5.55616676e-03, -2.67870495e-02,  1.22763845e+00,
         7.13855872e-01, -7.75964807e-03,  7.46522262e-02,
        -2.60612573e-02,  2.29894585e-04,  1.97767698e-02,
         5.05452455e-04,  5.94587604e-02],
       [ 6.67949185e-02, -3.28742701e-05,  6.04705057e-05,
         1.31682585e-04,  5.04556062e-04, -2.93123837e-02,
        -7.75964807e-03,  2.71072722e-04,  6.76678874e-05,
         4.08153555e-04,  5.20352151e-07, -5.15898438e-04,
        -3.35973163e-06, -1.20946841e-03],
       [-9.30003096e-01,  1.39736609e-03, -1.67433888e-03,
         2.89175812e-03, -1.45801606e-02,  3.46738125e-01,
         7.46522262e-02,  6.76678874e-05,  4.61000111e-02,
        -4.34452773e-03,  5.78552892e-05,  2.79491204e-04,
         4.51407229e-05,  4.42277125e-03],
       [ 2.55832730e-01, -6.55694264e-04,  3.27399617e-04,
         1.20245189e-04, -1.13377466e-03, -8.53404481e-02,
        -2.60612573e-02,  4.08153555e-04, -4.34452773e-03,
         3.77432434e-03, -9.91074135e-05, -9.46120914e-04,
         2.68964679e-06, -2.69209016e-03],
       [-3.26935542e-03,  2.95148223e-06, -8.59675973e-06,
        -2.09994292e-05,  1.02202111e-03, -2.29109270e-04,
         2.29894585e-04,  5.20352151e-07,  5.78552892e-05,
        -9.91074135e-05,  7.24112017e-06, -2.31083635e-06,
         6.01698334e-07, -1.56264705e-05],
       [-4.46193939e-01, -4.70279343e-05,  1.78767400e-04,
        -1.26685735e-03,  3.77524267e-02,  1.74896251e-01,
         1.97767698e-02, -5.15898438e-04,  2.79491204e-04,
        -9.46120914e-04, -2.31083635e-06,  1.37922235e-02,
         3.25336726e-05,  7.18133261e-04],
       [-8.29464179e-03,  3.94479452e-06, -1.54572023e-06,
         5.64672204e-06, -2.67641228e-05,  2.61293215e-03,
         5.05452455e-04, -3.35973163e-06,  4.51407229e-05,
         2.68964679e-06,  6.01698334e-07,  3.25336726e-05,
         7.17490674e-06,  2.17798397e-05],
       [-4.68800834e-01,  3.55625223e-04, -4.40306295e-04,
        -6.43918191e-04, -2.04643869e-02,  9.66559577e-02,
         5.94587604e-02, -1.20946841e-03,  4.42277125e-03,
        -2.69209016e-03, -1.56264705e-05,  7.18133261e-04,
         2.17798397e-05,  9.93009197e-03]])

延申

如果看其他类型回归结果如何提取,则看以下网址:

计量经济学类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值