探讨【查找】的经典题目(很重视细节)

这篇博客探讨了二分查找在实际编程中的应用和常见问题,特别是在处理有序数组时的边界条件和死循环预防。文章通过三个具体问题(查找元素范围、求唯一元素、找旋转数组中特定元素)详细阐述了解决策略,强调了在处理过程中注意数组的旋转、边界和递归使用。
摘要由CSDN通过智能技术生成

查找

二分查找看似简单,思路也很清晰,但是在实际编程很容易因为各种边界问题而出问题,尤其是当区间中最后只剩下一两个数时,非常容易陷入死循环。经常结合递归来解题。

练手题:69(数学解法) 34 540 4

  • 34:在排序数组中查找元素的第一个和最后一个位置

    相当于实现C++ 里的 lower_bound 和 upper_bound 函数。我们先对半分,然后根据中间元素向两边进行扩展(或单边)。要非常注意死循环问题和没找到的情况。

    class Solution {
    public:
    
        int low_bound(vector<int>& nums, int target,int left,int right){
            if(left>right)
                return -1;
            if(left==right)//防止出现死循环
                return nums[left]==target?left:-1;
            
            int mid=(left+right)/2;//不能+1,否则也会死循环
            if(nums[mid]<target)
                return low_bound(nums,target,mid+1,right);
            else
                return low_bound(nums,target,left,mid);//要包括mid
        }
    
        int high_bound(vector<int>& nums, int target,int left,int right){
            if(left>right)//没找到
                return -1;
            if(left==right){//防止出现死循环
                //return left; //错误!
                return nums[left]==target?left:-1;
            }
                
    
            //注意,这里如果用(left+right)/2会出现死循环:考虑5 7 7 8 8 10 最右侧的部分
            //导致区间总是找偏左的那个数
            int mid=(left+right)/2+1;
            if(nums[mid]>target)
                return high_bound(nums,target,left,mid-1);
            else
                return high_bound(nums,target,mid,right);//要包括mid
        }
    
        vector<int> searchRange(vector<int>& nums, int target) {
            //相当于自己实现low_bound和hige_bound
            vector<int> bound(2,-1);
            bound[0]=low_bound(nums,target,0,nums.size()-1);
            bound[1]=high_bound(nums,target,0,nums.size()-1);
            return bound;
        }
    };
    
  • 540:求有序数组中只出现一次的元素(其余都出现2次)

    不难,就是有个小小的边界处理问题。by the way,位运算也ok

    class Solution {
    public:
    //有坑啊孩子们 1 1 2 3 3 4 4 / 1 1 2 3 3 4 4 5 5 
        int singleNonDuplicate(vector<int>& nums) {
            if(nums.size()==1)  return nums[0];
            int left=0,right=nums.size()-1;
            //程序保证right-left+1必然为奇数
            while(left<right){
                int mid=(left+right)/2;
                if(nums[mid]!=nums[mid-1] && nums[mid]!=nums[mid+1])
                    return nums[mid];
                if(nums[mid]==nums[mid-1]){
                    if((mid-left)%2)
                        left=mid+1;
                    else//左侧扣掉当前数对后为奇数,向左走
                        right=mid-2;                 
                }
                else{
                    if((mid-left)%2)
                        right=mid-1;
                    else//左侧扣掉当前数对后为偶数,向右走
                        left=mid+2;
                }
            }
            //退出条件 left==right
            return nums[left];
        }
    };
    
  • 4:

    救大命,好混乱,需要对两个数组同时进行二分搜索。

    class Solution {
    public:
        int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {
            /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
             * 这里的 "/" 表示整除
             * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
             * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
             * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
             * 这样 pivot 本身最大也只能是第 k-1 小的元素
             * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
             * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
             * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
             */
    
            int m = nums1.size();
            int n = nums2.size();
            int index1 = 0, index2 = 0;
    
            while (true) {
                // 边界情况
                if (index1 == m) {
                    return nums2[index2 + k - 1];
                }
                if (index2 == n) {
                    return nums1[index1 + k - 1];
                }
                if (k == 1) {
                    return min(nums1[index1], nums2[index2]);
                }
    
                // 正常情况
                int newIndex1 = min(index1 + k / 2 - 1, m - 1);
                int newIndex2 = min(index2 + k / 2 - 1, n - 1);
                int pivot1 = nums1[newIndex1];
                int pivot2 = nums2[newIndex2];
                if (pivot1 <= pivot2) {
                    k -= newIndex1 - index1 + 1;
                    index1 = newIndex1 + 1;
                }
                else {
                    k -= newIndex2 - index2 + 1;
                    index2 = newIndex2 + 1;
                }
            }
        }
    
        double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
            int totalLength = nums1.size() + nums2.size();
            if (totalLength % 2 == 1) {
                return getKthElement(nums1, nums2, (totalLength + 1) / 2);
            }
            else {
                return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
            }
        }
    };
    

旋转数组问题

**旋转数组:**原本增序的数组被首尾相连后按某个位置断开( [1,2,2,3,4,5] → [2,3,4,5,1,2],在一位和二位断开)

一定一定画图画清除再做!一定一定想清楚再写!一定一定理解到位!

练手题:81 154

  • 81:给定一个值,判断这个值是否存在于这个为旋转数组中。

    对于当前的中点, 如果它指向的值小于等于右端,那么说明右区间是排好序的;反之,那么说明左区间是排好序的。 如果目标值位于排好序的区间内,我们可以对这个区间继续二分查找;反之,我们对于另一半区 间继续二分查找。

    不能!一开始就根据目标查找数字定向左段还是右段,而应该整体看待。我们的目标并不是断点在哪段,而是哪段有序。有序的片段正常二分查找,否则整段按乱序的思想查找。

    **注意,因为数组存在重复数字,如果中点和左端的数字相同,我们并不能确定是左区间全部 相同,还是右区间完全相同。**在这种情况下,我们可以将左右端点均向中间移一位,然后继续进行二分查找。

    给出一些特殊的测试样例: 7 7 7 8 7 和 7 8 7 7 7

    class Solution {
    public:
        bool search(vector<int>& nums, int target) {
            int len=nums.size()-1;
            if(!len)
                return nums[0]==target;       
            
            if(target==nums[0])
                return true; 
    
            int left=1,right=len; 
    /*
        我原来的想法是:先判断目标值在左右两边哪个区间,然后进行分类讨论,麻烦了!会出很多问题
        即if(target>nums[0]){//向右侧找 while() } else{ while()}
        直接一个大的while循环,内侧寻找是否有序就好了
    */     
        //    if(target>nums[0]){//向右侧找
                while(left<=right){
                    int mid=(left+right)/2;//找中间
                    if(nums[mid]==target)
                        return true;
                    //本题关键:转折点在哪里!
                    //无法分辨哪个区间有序,即方向不清时,即无法判断转折点位置
                    if(nums[left]==nums[right] && nums[left]==nums[mid]){
                        ++left;
                        --right;//缩短区间,注意最终有可能是1 1 1 2,即不符合题目原定义的类型
                       //我们用顺一点的思路,每次只缩短一边,保证缩短后的依然符合原定义
                       //证明:nums[left+1]>=nums[left]>=nums[right] 转折点不是left+1时
                       //转折点是left+1,如5 4 5 5 5 啊……一样算了还是加上把
                    }
                    //把区间换一种方式来看,即把某个区间内的数整体移到右边,剩余数合并后放在左边
                    //这样下面的式子就很好理解了
                    //默认已知nums[left]>=nums[right]……似乎也不是那么默认,如特殊情况
                    //该方向取等时:5 5 5 3 4 ,转折点依然在左侧
                    //说明左侧排序排好了,符合
                   // else if(nums[mid]<=nums[left]){//转折点必然在左侧,右侧升序
                   else if(nums[mid]<=nums[right]){//改成这个才对?
                        if(nums[mid]<target && target<=nums[right]){
                            //介于中点和右侧之间必然在右侧
                            left=mid+1;
                        }
                        else{//大于right或小于mid的都在左侧了
                            right=mid-1;
                        }                 
                    }
                   // else if(nums[mid]>nums[right]){//转折点必然在右侧,左侧有序
                   //上面那句话1 0 1 1 1会死循环
                   else{
                        if(nums[mid]>target && target>=nums[left]){
                            //介于中点和左侧,之间必然在左侧
                            right=mid-1;
                        }
                        else{//大于right或小于mid的都在左侧了
                            left=mid+1;
                        }
                    }
                }
            return false;
        }
    };
    
  • 154:寻找旋转数组的最小值

    用递归明显阳间了不少

    class Solution {
    public:
        //用递归
        int fMin(vector<int>& nums,int left,int right){
            if(left==right)//left>right时还没考虑,感觉不用考虑
                return nums[left];
            //对剩余两个元素的情况也特殊处理,否则越界后返回值很麻烦
            //或者把全部都传成mid而不是mid-1,left+1全部都是left之类的
            if(right-left==1)
                return min(nums[left],nums[right]);
    
            int mid=(left+right)/2;
            if(nums[left]<nums[right])//旋转n次时
                return nums[left];
    
            if(nums[left]==nums[right]){//左右相等
                if(nums[left]==nums[mid])//无法确定区间
                //如果是2 2
                    return min(fMin(nums,left,mid-1),fMin(nums,mid+1,right));
    
                if(nums[left]<nums[mid])//说明左侧区间升序了
                    return fMin(nums,mid+1,right);//右侧找,不用mid,因为有right
                return fMin(nums,left+1,mid);//右侧升序了,则右侧的最小值用mid代表
                //如果旋转点在左侧,left可以去掉
            }
            //不加else也行,默认nums[left]>nums[right]
            //直接从右侧开始找就行
            if(nums[mid]<=nums[right])
                return fMin(nums,left+1,mid);
            else
                return fMin(nums,mid+1,right);
    
        }
    
    
        int findMin(vector<int>& nums) {
            if(nums.size()==1)
                return nums[0];
            return fMin(nums,0,nums.size()-1);
        }
    };
    

    官方:

    class Solution {
    public:
        int findMin(vector<int>& nums) {
            int low = 0;
            int high = nums.size() - 1;
            while (low < high) {
                int pivot = low + (high - low) / 2;
                if (nums[pivot] < nums[high]) {
                    high = pivot;
                }
                else if (nums[pivot] > nums[high]) {
                    low = pivot + 1;
                }
                else {
                    high -= 1;
                }
            }
            return nums[low];
        }
    };
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值