TxGemma:面向治疗学的高效通用大型语言模型技术报告

一、摘要

治疗学开发是一项成本高昂、风险极高且失败率居高不下的艰巨任务。为应对这一行业痛点,本报告详细介绍了 TxGemma—— 一套高效、通用的大型语言模型(LLM)套件,其核心能力涵盖治疗学特性预测、交互式推理及可解释性分析。与传统任务特定模型不同,TxGemma 能够整合多样化来源的信息,在治疗学开发全流程中具备广泛应用价值。该套件包含 20 亿、90 亿和 270 亿参数三种模型变体,基于 Gemma-2 在包含小分子、蛋白质、核酸、疾病和细胞系的综合数据集上进行微调优化。在 66 项治疗学开发任务的基准测试中,TxGemma 在 64 项任务上(45 项表现更优)优于或媲美当前最先进的通用模型,在 50 项任务上(26 项表现更优)优于或媲美当前最先进的专用模型。针对临床试验不良事件预测等下游治疗学任务,TxGemma 微调所需的训练数据量显著少于基础 LLM,使其在数据稀缺场景中极具优势。此外,TxGemma 包含对话式模型,成功搭建起通用 LLM 与专用特性预测器之间的桥梁,支持科研人员通过自然语言交互、获取基于分子结构的预测机理解释,并开展深度科学讨论。在此基础上,本报告进一步介绍了 Agentic-Tx—— 一个由 Gemini 2.5 驱动的通用治疗学智能体系统,具备推理、行动、工作流管理和外部领域知识获取能力。该系统在 Humanity’s Last Exam 基准(化学与生物学领域)中,相对 o3-mini(high)实现 52.3% 的性能提升;在 GPQA(化学领域)中相对 o3-mini(high)提升 26.7%;在 ChemBench 基准中,ChemBench-Preference 和 ChemBench-Mini 任务分别比 o3-mini(high)提升 6.3% 和 2.4%,

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ASKCOS

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值