背景
上篇文章已经讲过,当数据严重偏离正态时,t检验已经难以反映数据的实际情况。此时最常见的方法是采用非参数的Wilconxon秩和检验代替。
有人做过模拟统计,在数据满足正态性时,采用Wilconxon秩和检验的效率大约为t检验的95%,在数据不满足正态性要求的时候,Wilconxon秩和检验的效率则远高于t检验
Wilconxon秩和检验
思想:假定有两组样本数量分别为n1和n2,首先将两组数据混合后排序,混合样本每个数值都有相同的机会排序为1,2,…n1+n2。不难理解,如果两组样本来自于相同的总体,那么理论上两组排序之后的秩次之和应该相等,等于(1+2+…+n1+n1)/2。
上面为理想情况,由于抽样误差的存在,两组数据排序后的秩和不可能正好等于(1+2+…+n1+n1)/2。但是,他们两者应该相差不大。如果相差太大,那就说明一开始的假设(两组来自同一总体)有问题,应该选择备择假设,两组样本不来自同一总体。