Wilconxon秩和检验:t检验的替代

在数据偏离正态分布时,t检验的准确性降低。Wilconxon秩和检验作为替代方法,在数据正态时效率接近t检验的95%,而在非正态数据中更优。该检验通过混合两组数据排序,比较秩和来判断是否来自同一总体,是处理非正态数据的有效统计工具。
摘要由CSDN通过智能技术生成

背景

上篇文章已经讲过,当数据严重偏离正态时,t检验已经难以反映数据的实际情况。此时最常见的方法是采用非参数的Wilconxon秩和检验代替。

有人做过模拟统计,在数据满足正态性时,采用Wilconxon秩和检验的效率大约为t检验的95%,在数据不满足正态性要求的时候,Wilconxon秩和检验的效率则远高于t检验

Wilconxon秩和检验

思想:假定有两组样本数量分别为n1和n2,首先将两组数据混合后排序,混合样本每个数值都有相同的机会排序为1,2,…n1+n2。不难理解,如果两组样本来自于相同的总体,那么理论上两组排序之后的秩次之和应该相等,等于(1+2+…+n1+n1)/2。

上面为理想情况,由于抽样误差的存在,两组数据排序后的秩和不可能正好等于(1+2+…+n1+n1)/2。但是,他们两者应该相差不大。如果相差太大,那就说明一开始的假设(两组来自同一总体)有问题,应该选择备择假设,两组样本不来自同一总体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值