李宏毅深度学习self-attentin学习笔记

一、self-attention的起源

self-attention初始也是用于解决seq2seq的问题。即input是一堆序列,而output也是一段长度固定或者不固定的序列值。和RNN比较类似。多说一句,从2022年开始李宏毅老师的机器学习课程中已经删除了有关RNN和LSTM的相关内容,因为self-attention完全可以替代RNN,且效果更好。

二、self-attention网络架构

在这里插入图片描述
注意力的本质思想就是说,考虑上下文的输入对当前的输入的影响,然后就和人的注意力一样,将重点放在部分输入上,值得被注意的、更为相关的输入会被分配更大的权重,也意味着更被重视。
如上图所示,注意力要做的类似于上图一样,假设有4个输入,则将4个输入都都进去,然后得到4个输出b1,b2,b3,b4。这4个输出则为考虑了上下文关系之后的4个全新的向量。
当然,这里的输入也可以不是输入向量,而是中间层的隐藏向量。
在说下,这里的上下文并不是指前后2个或4个输入,而是整个sequence的信息。这里为了方便,只展示了4个输入。
在这里插入图片描述
我们需要重点关注如何由a得到b。如何考虑输入和上下文之后的关系呢,可以用一个相关系数 α \alpha α来表征。
在这里插入图片描述
接下来,我们自然会思考,在self-attention中,如何自动决定两个向量之间的相关系数为多少呢,如何自动决定2个变量之间的关联性呢。
我们需要这样一个计算两个变量之间相关性的函数,如上图所示的2个黑色方框里面包围的部分。输入为2个向量,输出为2个向量之间的相关系数 α \alpha α。通常使用最多的是左侧的方法,叫做Dot-product
Dot-product是如何运作的呢,首先分别将两个输入向量和两个向量Wq,Wk进行相乘,相乘之后得到2个向量q,k。之后便可由这2个向量进行点乘dot-product得到相关系数 α \alpha α
我们看来下向量维度的变化。
输入:[N,1],一个列向量
Wq:[M,N],要与输入相乘,则其中一个维度必须对应
q:[M,1]
α \alpha α:一个实数scalar
在这里插入图片描述
点乘的计算公式如图所示。
在这里插入图片描述
具体来说,如何分别计算出第1个与第2个向量之间的系数 α 1 , 2 \alpha_{1,2} α1,2,以及其他相关系数 α 1 , 3 , α 1 , 4 \alpha_{1,3},\alpha_{1,4} α1,3,α1,4呢。
首先,使用Wq乘以a1,再使用Wk分别乘上a2,a3,a4。这样分别得到q1,k2,k3,k4。分别进行点乘dot-production便可得到相关系数。当然,这里
其中q有个名字叫做query,而k有个名字叫做keya1,2称为attention score
另外,a1也可以计算自己与自己的关联性,得到 α 1 , 1 \alpha_{1,1} α1,1
在这里插入图片描述
计算出所有的相关系数 a l p h a alpha alpha之后,便使用softmax函数进行归一化,重新得到新的 α ′ \alpha' α。这里除了用softmax,也可以用其他的方法。用softmax只是为了系数之和为1,方便一些而已。
在这里插入图片描述
而得到了 α ′ \alpha' α之后,便根据 α ′ \alpha' α去提取出整个sequence中比较重要的信息。具体如何抽取呢?
首先,我们把a1,a2,a3,a4左侧分别都统一再乘一个向量Wv,得到v1,v2,v3,v4。之后再乘以各自对应的 α ′ \alpha' α,便得到了对饮的b1

qkv是哪里来的,为何要引入?

讲到这里,很多人包括我自己一开始都是很懵逼的,没事为啥要搞出3个向量Wq,Wk,Wv出来呢?要计算相关系数很容易啊,直接将两个输入向量直接做dot-production也行啊,也可以直接得到相关系数啊。另外,直接将 α ′ \alpha' α分别乘以输入a1-a4得到b1多好,非得搞个Wv出来增加复杂度,这样操作有什么意义吗?
答案在于复杂化可以包容更好的结果。这是我当前的理解。
计算相关系数确实可以直接将2个输入直接做dot-production,但是,先乘上Wq Wk之后再做dot-production显然已经包含了直接做dot-production的情况,将其设为乘上单位矩阵就行。Wv也是同样的道理,设为单位矩阵后便成了我们想的那种最简单的方式。
用最简单的方式固然也好,但是这样,方法就已经固定了。
使用复杂的方式的原因在于,方法不固定,就可以利用计算结果,利用梯度下降法求出比最简单的方式可能效果更好的一种方法。更容易匹配我们的训练数据。
更新于20240520:
隔了一年,重新回头来看这个问题,又有了一些新的感悟。
为了解答为何会有qkv,我们需要先回头看一个问题。
输入 a 1 a_{1} a1 a 2 a_{2} a2的影响和 a 2 a_{2} a2 a 1 a_{1} a1的影响权重,即上面所提到的attention score,是不是应该是一样的。
答案肯定不是,如果前文对后文的影响和后文对前文的影响一样,那可能就意味着调换顺序也无所谓了,这显然不符合我们的认知。答案是不一样的。
ok,如果我们不引入qkv,直接将两个输入向量a1a2做点乘,然后最后也通过softmax归一化,也是可以得到想要的权重系数的,这样做会带来的问题就是a1a2的影响等于a2a1的影响。
那么怎么得到不一样的影响呢?
可以举个很简单的例子,例如找对象这件事情,男生找女生,考虑最大的维度可能是美貌,女生找男生,考虑最大的角度是人品。将男生假设为输入a1,女生假设为输入a2,要求女生对男生的影响,则必须变换到不同的维度。男生所需要的变换维度就是乘以Wq,女生需要变换的维度就是乘以Wk,这就是需要引入q,k的本质原因。这也是query和’key’的由来。q代表自己的思考维度,k代表别人的思考维度。
最后v呢?v的作用可以认为是从当前输入中提取出来的信息。需要将vqk分开来看。
其实v具有2个方面的作用,一个方面是输出b和输入a不一定具有相同的维度,而q,k只是得到权重系数,没有进行维度变换,因此,v具有维度变换的作用。
另一个作用是信息提取。
例如说2个句子:
一个苹果。
一个苹果15promax.
在2个句子中苹果所代表的含义完全不同,与Wv相乘之后,映射到高维空间中,应该相隔甚远。如果没有Wk的存在,只有qk,那么,这两个句子中的单词苹果在高维空间中可能就会很接近。所以还需要v的存在。

self-attention和attention的区别

两者的计算方式是一样的,区别在于self-attention关注的是输入之间,因为输入时一个序列,关注的是序列中元素相互之间的关系,应该把注意力放在哪里。例如说输入是“范冰冰和刘亦菲都好漂亮,但是刘亦菲可是仙女姐姐哎,所以我更喜欢它”。这个时候,在理解这个单词时,输入刘亦菲的影响就会比输入’范冰冰’的影响更大些。这样就是有些回答中,self-attention关心的是source内部之间的关系,而attention关心的是sourcetarget之间的关系。
再举个例子,“我爱你”,和"I love you",再翻译出I时,更应该关注的是,而不是爱你,单词I和单词的注意力得分应该高于其他2个单词,这种情况下就是attention,关注sourcetarget之间的关系。

在这里插入图片描述
同样,要计算出b2也是一样的道理。需要额外值得说明额是,b1,b2,b3,b4并不是先计算b1,再计算b2这种。而是一次性同时被算出来的。
在这里插入图片描述
我们如果从矩阵运算的角度来理解self-attention,每个输入a都会生成qkv三个向量,统一起来如上图所示。
Wq,Wk,Wv的系数都是被learning出来的。其中I表示由4个输入拼接而成的矩阵。
在这里插入图片描述
qkinner product/dot production的过程也可以看作是矩阵的乘法。
在这里插入图片描述
在这里插入图片描述

整个self-attention的过程如上图所示,本质上就是一系列的矩阵乘法运算。其中A'也叫做attention matrix.整个过程的输入是a1,a2,a3,a4,输出是b1,b2,b3,b4,而整个过程中需要学习的参数只有Wq,Wk,Wv

三、multi-head self-attention

为什么会有multi-head self-attention呢?因为前面有说过,相关其实有很多种情况都是相关,不能只有一种形式。因此在NN中,可以在多个地方定义相关的类型。
在这里插入图片描述
其中,qi分别乘上2个矩阵得到qi1和qi2。区分出1和2类别后,1类的分别做self-attention得到bi1,2类的再一起做self-attention得到bi2
在这里插入图片描述
得到bi1bi2之后可以再将其接起来,得到新的bi

四、positional encoding

上面讲述了self-attention之后,我们可以看下对于a1而言,a2,a4有任何关于位置上的差别吗?没有,把a2,a4调换位置好像也没有所谓。
问题在于,我们前面讲述的模型其实是缺了一个信息的,这个信息就是位置信息。上面的可以概括为天涯若比领,所有位置上的输入位置关系是一模一样远的。
这样做可能会存在一些问题。解决的方法叫做positional encoding
在这里插入图片描述
解决的方法就是为每个位置设定一个vector,ei。等于告诉self-attention位置信息,可以清楚知道哪个输入属于哪个位置。
positional encoding可以根据data学习出来,也可以人工设定,目前仍然是一个尚待研究的问题。

五、pytorch实现

在这里插入图片描述
我们慢慢仔细看输入和输出都是什么

5.1 参数

在这里插入图片描述

embed_dim:文档解释是模型的总维度。
num_heads:文档解释为平行的头的数量。这个其实很好理解。这里要注意的一点是embed_dim // num_heads 为每个head的维度
dropout:随机丢包的概率,默认为0.
bias:是否偏置,默认为True。
…中间一些参数省略
batch_first:如果设置为True,那么输入和输出的tensor维度为(batch,seq,feature)。默认为False,此时的输出和输入的tensor维度为(seq,batch,feature).这点和lstm还是比较类似的。

5.2 forward参数

self-attention我们一般并不会将其称为1个模型,而是一个组件,类似于lstm一样,用来提取特征。特征可以理解为输出的隐藏层,最后隐藏层再通过全连接进行输出,如果输出维度是1,则做回归。如果输出维度不为1,则进行分类。
因此,在实现具体模型时,一般还需要一个forward过程。
在这里插入图片描述
在这里插入图片描述

示例 使用self-attention 实现transformer

import torch
import torch.nn as nn


class TransformerModel(nn.Module):
    def __init__(self, d_model, nhead, num_layers, dim_feedforward):
        super(TransformerModel, self).__init__()
        # Multihead Attention
        self.attention = nn.MultiheadAttention(d_model, nhead)

        # Position-wise Feedforward
        self.feedforward = nn.Sequential(
            nn.Linear(d_model, dim_feedforward),
            nn.ReLU(),
            nn.Linear(dim_feedforward, d_model)
        )

        # Layer normalization
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)

        # Number of layers
        self.num_layers = num_layers

    def forward(self, x):
        # Forward through multiple layers
        for _ in range(self.num_layers):
            # Multihead Attention
            attn_output, _ = self.attention(x, x, x)

            # Residual connection and layer normalization
            x = self.norm1(x + attn_output)

            # Position-wise Feedforward
            ff_output = self.feedforward(x)

            # Residual connection and layer normalization
            x = self.norm2(x + ff_output)

        return x


# Example usage
d_model = 256  # Embedding dimension
nhead = 8  # Number of attention heads
num_layers = 6  # Number of transformer layers
dim_feedforward = 512  # Dimension of the feedforward layer

# Create a Transformer model
model = TransformerModel(d_model, nhead, num_layers, dim_feedforward)

# Input sequence (batch_size, sequence_length, d_model)
input_sequence = torch.rand(32, 20, d_model)

# Forward pass through the Transformer model
output_sequence = model(input_sequence)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值