Vehicle Dyanmics and Control 2. Dynamic bicycle model

文章详细介绍了车辆动力学中的动态自行车模型,包括质点的平动和转动运动,以及轮胎模型对车辆横向力和力矩的影响。线性轮胎模型假设中,轮胎的侧向力与滑移角成比例,而角动量原理用于描述车辆的转向动态。文章还讨论了静态和动态摩擦力在轮胎接触面上的作用,以及Pacejka的魔力公式作为经验轮胎模型的应用。
摘要由CSDN通过智能技术生成

参考链接如下:
Vehicle Dyanmics and Control

2. Dynamic bicycle model

2.1 Review: Dynamics of a rigid body

Translatory motion

Consider a point P with mass m in R 3 \R^3 R3. Let r P → ( t ) ∈ R 3 \overrightarrow{r_P}(t)\in\R^3 rP (t)R3 be its position in an inertial reference frame, and v P → ( t ) ∈ R 3 \overrightarrow{v_P}(t)\in\R^3 vP (t)R3 its velocity, and a P → ( t ) ∈ R 3 \overrightarrow{a_P}(t)\in\R^3 aP (t)R3 its acceleration.
在这里插入图片描述

  • The (linear) momentum of P is defined as p P → ( t ) = m ( t ) v P → ( t ) \overrightarrow{p_P}(t)=m(t)\overrightarrow{v_P}(t) pP (t)=m(t)vP (t).
  • By Newton’s second law, d p P → ( t ) d t = ∑ i F i → ( t ) \frac{d\overrightarrow{p_P}(t)}{dt}=\sum_i\overrightarrow{F_i}(t) dtdpP (t)=iFi (t), or if m(t) is constant. m a P → ( t ) = ∑ i F i → ( t ) m\overrightarrow{a_P}(t)=\sum_i\overrightarrow{F_i}(t) maP (t)=iFi (t), where F i → ( t ) \overrightarrow{F_i}(t) Fi (t) represent all forces acting on the point mass P.
    在这里插入图片描述
    Consider a rigid body B with mass m in R 3 \R^3 R3. Let r c → ( t ) ∈ R 3 \overrightarrow{r_c}(t)\in\R^3 rc (t)R3 be the position of its center of gravity C in an inertial reference frame, and v C → ( t ) ∈ R 3 \overrightarrow{v_C}(t)\in\R^3 vC (t)R3 its velocity, and a C → ( t ) ∈ R 3 \overrightarrow{a_C}(t)\in\R^3 aC (t)R3 its acceleration.
    在这里插入图片描述
  • The (linear) momentum of B is defined as p B → ( t ) = m ( t ) v C → ( t ) \overrightarrow{p_B}(t)=m(t)\overrightarrow{v_C}(t) pB (t)=m(t)vC (t).
  • By the center-of-gravity principle, the center of gravity of a rigid body behaves like a point mass with mass m and as if all forces acting anywhere on the rigid body were acting directly on this point mass: d p B → ( t ) d t = ∑ i F i → ( t ) \frac{d\overrightarrow{p_B}(t)}{dt}=\sum_i\overrightarrow{F_i}(t) dtdpB (t)=iFi (t), or if m(t) is constant. m a C → ( t ) = ∑ i F i → ( t ) m\overrightarrow{a_C}(t)=\sum_i\overrightarrow{F_i}(t) maC (t)=iFi (t), where F i → ( t ) \overrightarrow{F_i}(t) Fi (t) represent all forces acting on the rigid body B.
    在这里插入图片描述

Rotatory motion

Consider a rigid body B with mass m in R 3 \R^3 R3. For the rotatory motion, also the geometric shape of B and the spatial distribution of its mass is important.
在这里插入图片描述

  • Let the reference point C be the body’s center of gravity. (Alternatively, C may be chosen as a fixed point in the body frame that is also a fixed point in the inertial frame.)
  • Let ρ ( x , y , z ) \rho(x,y,z) ρ(x,y,z) be the body’s density function, so that m = ∫ B d m = ∫ B ρ ( x , y , z ) d x d y d z m=\int_{B}dm=\int_{B}\rho(x,y,z)dxdydz m=Bdm=Bρ(x,y,z)dxdydz.
    image-20230517170321120
    在这里插入图片描述
  • The inertia tensor of B is defined as
    在这里插入图片描述
  • Let ω → \overrightarrow\omega ω be the vector of angular velocities of the rigid body about the x-, y-, z-axes:
    ω → = [ ω x ω y ω z ] \overrightarrow\omega= \left[\begin{array}{c} \omega_x \\ \omega_y \\ \omega_z \end{array}\right] ω = ωxωyωz
  • The angular momentum L → ( c ) \overrightarrow L^{(c)} L (c) of the rigid body (w.r.t. C) is given by L → ( c ) = Θ ω → \overrightarrow L^{(c)}=\Theta\overrightarrow\omega L (c)=Θω .
    image-20230517184548380
    在这里插入图片描述
  • By the angular momentum principle, d d t L → ( c ) ( t ) = ∑ i M i ( c ) → ( t ) \frac{d}{dt}\overrightarrow L^{(c)}(t)=\sum_i\overrightarrow{M^{(c)}_i}(t) dtdL (c)(t)=iMi(c) (t), or if Θ ( t ) \Theta(t) Θ(t) is constant. Θ ω → ˙ ( t ) = ∑ i M i ( c ) → ( t ) \Theta\dot{\overrightarrow\omega}(t)=\sum_i\overrightarrow{M^{(c)}_i}(t) Θω ˙(t)=iMi(c) (t), where M i ( c ) → ( t ) \overrightarrow{M^{(c)}_i}(t) Mi(c) (t) are the momentums of all forces acting on B w.r.t. C.
    image-20230517184602940
    在这里插入图片描述

2.2 Tires Terminology and basics

在这里插入图片描述
在这里插入图片描述

2.3 Lateral tire models

The purpose of tire models is to determine the forces and moments that act on the vehicle via its tire-road contact.
在这里插入图片描述
In the contact patches, tire forces and tire moments are acting on each tire:

Tire forcesTire moments
vertical force F → z \overrightarrow{F}_z F zaligning torque M → z \overrightarrow{M}_z M z (回正力矩)(主要考虑)
longitudinal force F → x \overrightarrow{F}_x F xoverturning moment M → x \overrightarrow{M}_x M x (倾覆力矩)
lateral force F → y \overrightarrow{F}_y F yrolling resistance moment M → y \overrightarrow{M}_y M y (滚动阻力矩)
Assumption: For lateral tire models, the longitudinal force F → x \overrightarrow{F}_x F x is neglected (i.e. no acceleration and braking).
Difficulties:
  • Uneven pressure distribution in the tire contact patch
  • Complexity of the tire-road contact
  • Different road and tire conditions

Analytic tire models

The main idea is to derive the tire forces from first principles in mechanics, in particular Coulomb friction (adhesion + friction) in the contact patch and Elastic deformation of the tire.
在这里插入图片描述
The following elastic Foundation model for lateral tire forces has been developed by Ernst Fiala in 1954:
在这里插入图片描述
In the simplest case, we may allow for a discontinuous displacement of the center line and a discontinuous slope:
在这里插入图片描述
Case 1: The maximum static friction force of μ F z \mu F_z μFz ( μ \mu μ: static friction parameter) is not exceeded anywhere in the contact patch.
Lateral tire force: F y = 1 2 a ∫ x = 0 x = 2 a c ( x ) y ( x ) d x = 1 2 a ∫ x = 0 x = 2 a c ⋅ x tan ⁡ α d x = c a tan ⁡ α ≈ c a α F_y = \frac{1}{2a}\int^{x=2a}_{x=0}c(x)y(x)dx=\frac{1}{2a}\int^{x=2a}_{x=0}c\cdot x\tan\alpha dx=ca\tan\alpha\approx ca\alpha Fy=2a1x=0x=2ac(x)y(x)dx=2a1x=0x=2acxtanαdx=catanαcaα. Cornering stiffness c α = c a c_{\alpha} = ca cα=ca, so F y = c α α F_y=c_{\alpha}\alpha Fy=cαα, this tire model is also called the linear tire model.
Aligning torque: M z = 1 2 ∫ x = 0 x = 2 a c ( x ) y ( x ) ( x − a ) d x = 1 2 a ∫ x = 0 x = 2 a c ⋅ x tan ⁡ α ( x − a ) d x ≈ ( 1 3 c a 2 ) α M_z = \frac{1}{2}\int^{x=2a}_{x=0}c(x)y(x)(x-a)dx=\frac{1}{2a}\int^{x=2a}_{x=0}c\cdot x\tan\alpha(x-a) dx\approx (\frac{1}{3}ca^2)\alpha Mz=21x=0x=2ac(x)y(x)(xa)dx=2a1x=0x=2acxtanα(xa)dx(31ca2)α
在这里插入图片描述
Case 2: The slip angle α \alpha α is large enough that the maximum static friction μ F z \mu F_z μFz is exceeded at some place in the contact patch.
The center line displacement is given by
y ( x ) = x tan ⁡ α i f   0 < x < x ˉ ( s t a t i c   f r i c t i o n ) y ( x ) = μ F z c i f   x ˉ ≤ x ≤   2 a ( d y n a m i c   f r i c t i o n ) x ˉ tan ⁡ α = μ F z c ⇒ x ˉ = μ F z c tan ⁡ α y(x) = x\tan\alpha\quad if\ 0<x<\bar x\quad (static\ friction) \\ y(x) = \frac{\mu F_z}{c}\quad if\ \bar x\leq x\leq\ 2a \quad (dynamic\ friction) \\ \bar x\tan\alpha = \frac{\mu F_z}{c} \Rightarrow \bar x= \frac{\mu F_z}{c\tan\alpha} y(x)=xtanαif 0<x<xˉ(static friction)y(x)=cμFzif xˉx 2a(dynamic friction)xˉtanα=cμFzxˉ=ctanαμFz
Lateral tire force: F y = 1 2 a [ ∫ x = 0 x = x ˉ c x tan ⁡ α d x + ∫ x = x ˉ x = 2 a c μ F z c d x ] = μ F z − μ 2 F z 2 4 a c tan ⁡ α F_y = \frac{1}{2a}[\int^{x=\bar x}_{x=0}cx\tan\alpha dx+\int^{x=2a}_{x=\bar x}c\frac{\mu F_z}{c} dx]=\mu F_z-\frac{\mu^2F_z^2}{4ac\tan\alpha} Fy=2a1[x=0x=xˉcxtanαdx+x=xˉx=2accμFzdx]=μFz4actanαμ2Fz2, if α ≥ μ F z 2 a c \alpha\geq\frac{\mu F_z}{2ac} α2acμFz.
Aligning torque: M z = 1 2 a [ ∫ x = 0 x = x ˉ c x tan ⁡ α ( x − a ) d x + ∫ x = x ˉ x = 2 a c μ F z c ( x − a ) d x ] = μ 2 F z 2 4 c tan ⁡ α − μ 3 F z 3 16 c 2 a tan ⁡ 2 α M_z = \frac{1}{2a}[\int^{x=\bar x}_{x=0}cx\tan\alpha (x-a)dx+\int^{x=2a}_{x=\bar x}c\frac{\mu F_z}{c} (x-a)dx]=\frac{\mu^2F_z^2}{4c\tan\alpha}-\frac{\mu^3F_z^3}{16c^2a\tan^2\alpha} Mz=2a1[x=0x=xˉcxtanα(xa)dx+x=xˉx=2accμFz(xa)dx]=4ctanαμ2Fz216c2atan2αμ3Fz3, if α ≥ μ F z 2 a c \alpha\geq\frac{\mu F_z}{2ac} α2acμFz.

Empirical tire models

The main idea is to fit the parameters of predefined functions to measured data from a tire test bench. Empirical data shows that the lateral tire force F y F_y Fy roughly behaves as follows:
在这里插入图片描述
The shape of the tire force curve depends on many variables, e.g.:

  • size of the tire;
  • construction type (radial-ply, …);
  • number and angle of plies;
  • general tire / tread design;
  • aspect ratio;
    For any given tire (above variables fixed), the main factors are:
  • tire inflation pressure;
  • tire load (vertical force F z F_z Fz;
    A frequent assumption is that F y F z \frac{F_y}{F_z} FzFy follows the same curve, but actually:
    在这里插入图片描述
    The Pacejka tire model is the most commonly used empirical tire model practice. It is based on the Magic Formula:
    F y = D sin ⁡ [ C arctan ⁡ ( B α − E ( B α − E ( B α − arctan ⁡ ( B α ) ) ) ) ] μ F z F_y = D\sin[C\arctan(B\alpha-E(B\alpha-E(B\alpha-\arctan(B\alpha))))]\mu F_z Fy=Dsin[Carctan(BαE(BαE(Bαarctan(Bα))))]μFz
VariablesMeaning
α \alpha αtire side slip angle
μ \mu μtire-road friction coefficient
F z F_z Fzvertical tire force
Bstiffness factor
Cshape factor
Dpeak value
Ecurvature factor

在这里插入图片描述

2.4 The dynamic bicycle model with linear tires

在这里插入图片描述
Assumptions:

  • wheels of the front and rear axle are lumped together into one front and one rear wheel;
  • reference point C is the vehicle’s center of gravity;
  • vehicle’s motion is restricted to the X, Y-plane;
  • for the lateral and yaw motion, the vehicle is considered as a rigid body, whose dynamics are determined by the fundamental laws of motion;
  • only lateral tire forces, generated by a linear tire model;
  • the steering angle is small: sin ⁡ δ ≈ δ \sin\delta\approx\delta sinδδ, tan ⁡ δ ≈ δ \tan\delta\approx\delta tanδδ, cos ⁡ δ ≈ 1 \cos\delta\approx1 cosδ1;
  • for the longitudinal motion, the velocity v l o n v_{lon} vlon is constant;

Laws of motion

在这里插入图片描述
Lateral dynamics:
m a y ( x , y ) = v ˙ l a t + ω v l o n = ∑ i F y , i = F r + F f cos ⁡ δ ≈ F r + F f a y ( x , y ) = v ˙ l a t + ω v l o n ( c e n t r i p e t a l   a c c e l e r a t i o n ) ⇒ m ( v ˙ l a t + ω v l o n ) = F r + F f (1) ma_y^{(x,y)}=\dot v_{lat} + \omega v_{lon}=\sum_iF_{y,i}=F_r+F_f\cos\delta\approx F_r+F_f \\ a_y^{(x,y)}=\dot v_{lat} + \omega v_{lon}(\mathrm{centripetal\ acceleration}) \\ \Rightarrow m(\dot v_{lat} + \omega v_{lon})= F_r+F_f \tag{1} may(x,y)=v˙lat+ωvlon=iFy,i=Fr+FfcosδFr+Ffay(x,y)=v˙lat+ωvlon(centripetal acceleration)m(v˙lat+ωvlon)=Fr+Ff(1)
Yaw dynamics:
I z ω ˙ = ∑ i M I ( c ) = − l r F r + l f F f cos ⁡ δ ⇒ I z ω ˙ = − l r F r + l f F f (2) I_z\dot\omega=\sum_iM_I^{(c)}=-l_rF_r+l_fF_f\cos\delta \\ \Rightarrow I_z\dot\omega=-l_rF_r+l_fF_f \tag{2} Izω˙=iMI(c)=lrFr+lfFfcosδIzω˙=lrFr+lfFf(2)

Tire forces

Linear tire model: F f = − c α , f α f F_f = -c_{\alpha,f}\alpha_f Ff=cα,fαf, F r = − c α , r α r F_r=-c_{\alpha,r}\alpha_r Fr=cα,rαr
Velocity geometry: α f ≈ tan ⁡ α f = v A , η A , ϵ \alpha_f\approx\tan\alpha_f=\frac{v_{A, \eta}}{A,\epsilon} αftanαf=A,ϵvA,η, α r ≈ tan ⁡ α r = v B , y B , x \alpha_r\approx\tan\alpha_r=\frac{v_{B,y}}{B,x} αrtanαr=B,xvB,y
Kinematics: v B , x = v l o n v_{B,x}=v_{lon} vB,x=vlon, v B , y = v l a t − ω l r v_{B,y}=v_{lat}-\omega l_r vB,y=vlatωlr, v A , x = v l o n v_{A,x}=v_{lon} vA,x=vlon, v A , y = v l a t + ω l f v_{A,y}=v_{lat}+\omega l_f vA,y=vlat+ωlf
Coordinate transformation ( x , y ) → ( ϵ , η ) (x,y)\rightarrow(\epsilon,\eta) (x,y)(ϵ,η):
v A , ϵ = v A , x cos ⁡ δ + v A , y sin ⁡ δ v A , η = − v A , x sin ⁡ δ + v A , y cos ⁡ δ v_{A,\epsilon}=v_{A,x}\cos\delta+v_{A,y}\sin\delta \\ v_{A,\eta}=-v_{A,x}\sin\delta+v_{A,y}\cos\delta vA,ϵ=vA,xcosδ+vA,ysinδvA,η=vA,xsinδ+vA,ycosδ
⇒ F f = − c α , f α f = − c α , f v A , η A , ϵ = − c α , f − v l o n δ + v l a t + ω l f v l o n + ( v l a t + ω l f ) δ ≈ c α , f δ − c α , f v l a t + ω l f v l o n i f   v l o n ≫ ( v l a t + ω l f ) δ (3) \Rightarrow F_f=-c_{\alpha,f}\alpha_f=-c_{\alpha,f}\frac{v_{A, \eta}}{A,\epsilon}=-c_{\alpha,f}\frac{-v_{lon}\delta+v_{lat}+\omega l_f}{v_{lon}+(v_{lat}+\omega l_f)\delta}\approx c_{\alpha,f}\delta-c_{\alpha,f}\frac{v_{lat}+\omega l_f}{v_{lon}} \\ \mathrm{if}\ v_{lon}\gg(v_{lat}+\omega l_f)\delta \tag{3} Ff=cα,fαf=cα,fA,ϵvA,η=cα,fvlon+(vlat+ωlf)δvlonδ+vlat+ωlfcα,fδcα,fvlonvlat+ωlfif vlon(vlat+ωlf)δ(3)
F r = − c α , r α r = − c α , r v B , y B , x = − c α , r v l a t − ω l r v l o n (4) F_r=-c_{\alpha,r}\alpha_r=-c_{\alpha,r}\frac{v_{B,y}}{B,x}=-c_{\alpha,r}\frac{v_{lat}-\omega l_r}{v_{lon}} \tag{4} Fr=cα,rαr=cα,rB,xvB,y=cα,rvlonvlatωlr(4)

Linear bicycle model: State space representation

Substitution of the front (3) and rear (4) tire forces yields in (1):
m ( v ˙ l a t + ω v l o n ) = − c α , r v l a t − ω l r v l o n + c α , f δ − c α , f v l a t + ω l f v l o n v ˙ l a t = − c α , r + c α , f m v l o n v l a t + c α , r l r − c α , f l f m v l o n ω − v l o n ω + c α , f m δ m(\dot v_{lat} + \omega v_{lon})=-c_{\alpha,r}\frac{v_{lat}-\omega l_r}{v_{lon}}+c_{\alpha,f}\delta-c_{\alpha,f}\frac{v_{lat}+\omega l_f}{v_{lon}} \\ \dot v_{lat}=-\frac{c_{\alpha,r}+c_{\alpha,f}}{mv_{lon}}v_{lat}+\frac{c_{\alpha,r}l_r-c_{\alpha,f}l_f}{mv_{lon}}\omega-v_{lon}\omega+\frac{c_{\alpha,f}}{m}\delta m(v˙lat+ωvlon)=cα,rvlonvlatωlr+cα,fδcα,fvlonvlat+ωlfv˙lat=mvloncα,r+cα,fvlat+mvloncα,rlrcα,flfωvlonω+mcα,fδ
in (2):
I z ω ˙ = − l r ( − c α , r v l a t − ω l r v l o n ) + l f ( c α , f δ − c α , f v l a t + ω l f v l o n ) ω ˙ = c α , r l r − c α , f l f I z v l o n v l a t − c α , r l r 2 − c α , f l f 2 I z v l o n ω + c α , f I z l f δ I_z\dot\omega=-l_r(-c_{\alpha,r}\frac{v_{lat}-\omega l_r}{v_{lon}})+l_f(c_{\alpha,f}\delta-c_{\alpha,f}\frac{v_{lat}+\omega l_f}{v_{lon}})\\ \dot\omega=\frac{c_{\alpha,r}l_r-c_{\alpha,f}l_f}{I_zv_{lon}}v_{lat}-\frac{c_{\alpha,r}l_r^2-c_{\alpha,f}l_f^2}{I_zv_{lon}}\omega+\frac{c_{\alpha,f}}{I_z}l_f\delta Izω˙=lr(cα,rvlonvlatωlr)+lf(cα,fδcα,fvlonvlat+ωlf)ω˙=Izvloncα,rlrcα,flfvlatIzvloncα,rlr2cα,flf2ω+Izcα,flfδ
This is equivalent to the following state space representation:
states: x 1 = v l a t x_1=v_{lat} x1=vlat, x 2 = ψ x_2=\psi x2=ψ, x 3 = ω x_3=\omega x3=ω; input: u = δ u=\delta u=δ
⇒ d d t [ x 1 x 2 x 3 ] = [ v ˙ l a t ψ ˙ ω ˙ ] = [ − c α , r + c α , f m v l o n 0 c α , r l r − c α , f l f m v l o n − v l o n 0 0 1 c α , r l r − c α , f l f I z v l o n 0 − c α , r l r 2 − c α , f l f 2 I z v l o n [ x 1 x 2 x 3 ] + [ c α , f m 0 c α , f I z l f ] u ] \Rightarrow\frac{d}{dt} \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]= \left[\begin{array}{c} \dot v_{lat} \\ \dot \psi \\ \dot \omega \end{array}\right]= \left[\begin{array}{ccc} -\frac{c_{\alpha,r}+c_{\alpha,f}}{mv_{lon}} & 0 & \frac{c_{\alpha,r}l_r-c_{\alpha,f}l_f}{mv_{lon}}-v_{lon} \\ 0 & 0 &1 \\ \frac{c_{\alpha,r}l_r-c_{\alpha,f}l_f}{I_zv_{lon}} & 0 & -\frac{c_{\alpha,r}l_r^2-c_{\alpha,f}l_f^2}{I_zv_{lon}} \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] + \left[\begin{array}{c} \frac{c_{\alpha,f}}{m} \\ 0 \\ \frac{c_{\alpha,f}}{I_z}l_f \end{array}\right] u \end{array}\right] dtd x1x2x3 = v˙latψ˙ω˙ = mvloncα,r+cα,f0Izvloncα,rlrcα,flf000mvloncα,rlrcα,flfvlon1Izvloncα,rlr2cα,flf2 x1x2x3 + mcα,f0Izcα,flf u
with X ˙ = v l o n cos ⁡ ψ − v l a t sin ⁡ ψ \dot X=v_{lon}\cos\psi-v_{lat}\sin\psi X˙=vloncosψvlatsinψ and Y ˙ = v l o n sin ⁡ ψ + v l a t cos ⁡ ψ \dot Y=v_{lon}\sin\psi+v_{lat}\cos\psi Y˙=vlonsinψ+vlatcosψ the model can be augmented by the global position to a nonlinear state space model.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值