python
文章平均质量分 72
python
naca yu
拧过螺丝,焊过板子的AI调参侠,对多模态融合感知有浓厚兴趣,交流请看文章-置顶,欢迎友好探讨各类问题
展开
-
np.unique()函数及其应用(VoxelNet)
np.unique原创 2022-09-29 12:00:48 · 421 阅读 · 0 评论 -
批量对数据添加噪声并生成新命名标注文件
比赛中,通过随机添加高斯噪声和椒盐噪声并生成新命名的标注文件:原创 2022-06-09 17:36:49 · 277 阅读 · 0 评论 -
多传感器融合目标检测系列:CenterFusion(基于CenterNet)源码深度解读: :DLA34 (四)
CenterNet与Centerfusion结构解析原创 2022-03-05 16:16:59 · 11216 阅读 · 3 评论 -
CenterFusion(多传感器融合目标检测网络)与自动驾驶数据集nuScenes:模型的数据加载(三)
模型加载原创 2022-03-01 16:57:47 · 5177 阅读 · 7 评论 -
nuScenes自动驾驶数据集:格式转换,模型的数据加载(二)
自动驾驶数据集解析原创 2022-02-27 22:59:32 · 6432 阅读 · 1 评论 -
深度学习中对tensor向量进行维度调整的常用方法总结reshape()、transpose()、unsqueeze()
在炼丹日常,很多模型为了保持tensor的计算便利和维度统一(例如resnet)会涉及到很多的维度转换,这时候很容易就绕晕,在参加飞浆的transformer课程中,学习了很多灵活变化维度的方法,这些方法能够让我们减少相当一部分的维度转换的复杂度。下面逐个介绍常用的维度转换方法:reshape方法:维度重整简单的reshape方法我们就不进行介绍,主要介绍reshape中-1的灵活运用,我们可以轻松的避免一些计算。import paddleimport paddle.nn as nn原创 2021-12-16 22:16:49 · 9323 阅读 · 3 评论 -
LabelImg的安装与使用(Anaconda环境)
LabelImg的安装与使用(Anaconda环境)Labellmg的安装下载与配置Ananconda环境使用Jupyter notebook配置labellmg环境(也可以使用tensorflow环境)如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入Labellmg的安原创 2021-05-07 23:04:21 · 7028 阅读 · 1 评论 -
MMD(最大最小距离)与均值聚类的K_Means算法实现与性能比较
文章目录一. MMD算法简介与实现1.1 MMD算法简介1.2 算法实现1.2.1 算法1.2.2 程序1.3 算法性能二. 均值聚类算法简介与实现1.1 均值聚类算法简介1.2 算法实现1.2.1 算法1.2.2 程序sklearn简单实现手动实现1.3 算法性能三. 两类算法性能比较一. MMD算法简介与实现1.1 MMD算法简介 MMD(最大最小距离算法)最大最小距离法是模式识别中一种基于试探的类聚算法,它以欧式距离为基础,取尽可能远的对象作为聚类中心。因此可以避免K-m原创 2021-11-17 22:47:43 · 4663 阅读 · 4 评论